Diketopyrrolopyrrole (DPP) and its derivatives, as electron deficient units, are widely used as building blocks in organic field-effect transistors, obtaining high performance. However, further modification of the DPP structure is crucial for the development of organic semiconductors. In this work, an FDPP is synthesized and characterized. The results show that FDPP exhibited not only a good planar core structure with a good conjugation system, but also strong aggregation in the solid state. As a consequence, FDPP presents p-type behavior with a hole mobility of ∼9.7 × 10 cm V s. This study suggests that FDPP is a promising electron deficient unit for high performance semiconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590918 | PMC |
http://dx.doi.org/10.3389/fchem.2023.1280816 | DOI Listing |
Autophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Université de Caen Normandie, ENSICAEN, CNRS, LCS, 14000 Caen, France.
Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.
View Article and Find Full Text PDFRSC Adv
January 2025
Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
Mild steel provides strength to various building and industrial materials but it is badly affected by corrosion. In the present study, we investigate the efficacy of , a plant-based green corrosion inhibitor to minimize mild steel corrosion in a 1 M HSO solution. Weight loss, surface coverage, inhibition efficiency, and corrosion rate measurements were evaluated for various inhibitor concentrations and time intervals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!