Enzymes in glucose metabolism have been subjected to numerous studies, revealing the importance of their biological roles during the cell cycle. However, due to the lack of viable experimental strategies for measuring enzymatic activities particularly in living human cells, it has been challenging to address whether their enzymatic activities and thus anticipated glucose flux are directly associated with cell cycle progression. It has remained largely elusive how human cells regulate glucose metabolism at a subcellular level to meet the metabolic demands during the cell cycle. Meanwhile, we have characterized that rate-determining enzymes in glucose metabolism are spatially organized into three different sizes of multienzyme metabolic assemblies, termed glucosomes, to regulate the glucose flux between energy metabolism and building block biosynthesis. In this work, we first determined using cell synchronization and flow cytometric techniques that enhanced green fluorescent protein-tagged phosphofructokinase is adequate as an intracellular biomarker to evaluate the state of glucose metabolism during the cell cycle. We then applied fluorescence single-cell imaging strategies and discovered that the percentage of Hs578T cells showing small-sized glucosomes is drastically changed during the cell cycle, whereas the percentage of cells with medium-sized glucosomes is significantly elevated only in the G1 phase, but the percentage of cells showing large-sized glucosomes is barely or minimally altered along the cell cycle. Should we consider our previous localization-function studies that showed assembly size-dependent metabolic roles of glucosomes, this work strongly suggests that glucosome sizes are modulated during the cell cycle to regulate glucose flux between glycolysis and building block biosynthesis. Therefore, we propose the size-specific modulation of glucosomes as a behind-the-scenes mechanism that may explain functional association of glucose metabolism with the cell cycle and, thereby, their metabolic significance in human cell biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591302 | PMC |
http://dx.doi.org/10.1021/acsbiomedchemau.3c00037 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
Albert Einstein College of Medicine, Bronx, NY, United States.
Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
Introduction: Iron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.
Method: In the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines.
Curr Med Chem
January 2025
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutcihe (STEBICEF) Università di Palermo, Via Archirafi 32, 90123 Palermo.
CDK2 plays a pivotal role in controlling the cell cycle progression in eukaryotes and for this reason, it has been the subject of several studies for suitable inhibitors in the last decades. But more than 30 years of basic research have not generated an inhibitor as marketed drugs. Some inhibitors are to date in early phase clinical development.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
While NUSAP1's association with various tumors is established, its predictive value for prognosis and immunotherapy in lung adenocarcinoma (LUAD) remains unconfirmed. We analyzed Nucleolar Spindle-Associated Protein 1 (NUSAP1) gene expression in TCGA and GTEx datasets and validated it in clinicopathological tissues using qRT-PCR and immunohistochemistry. Additionally, we investigated NUSAP1's relationship with patient prognosis across TCGA and five GEO cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!