Amorphous solid dispersions (ASDs) are an enabling formulation approach used to enhance bioavailability of poorly water-soluble molecules in oral drug products. Drug-rich amorphous nanoparticles generated during ASD dissolution maintain supersaturation that drives enhanced absorption. However, formation of nanoparticles requires large quantities of polymers to release drugs rapidly, resulting in an ASD drug load <25%. Delivering directly engineered drug-rich amorphous nanoparticles can reduce the quantities of polymers significantly without sacrificing bioavailability. Preparation of 90% drug-load amorphous nanoparticles (ANPs) of <300 nm diameter using solvent/antisolvent nanoprecipitation, organic solvent removal, and spray drying was demonstrated previously on model compound ABT-530 with Copovidone and sodium dodecyl sulfate (anionic). In this work, nonionic surfactant d-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS, or TPGS) was used to prepare ANPs as a comparison. Characterization of ANPs by dynamic light scattering, filtrate potency assay, scanning electron microscopy, and differential scanning calorimetry revealed differences in surface properties of nanoparticles afforded by surfactants. This work demonstrates the importance of understanding the impact of the stabilizing agents on nanoparticle behavior when designing a high-drug-load amorphous formulation for poorly water-soluble compounds as well as the impact on redispersion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00684 | DOI Listing |
Int J Biol Macromol
December 2024
Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China. Electronic address:
Prodigiosin (PG) is a natural compound produced by microorganisms, that is known for its promising bioactive properties. However, owing to its inherent water insolubility, low bioavailability, and poor stability, the practical application of prodigiosin remains challenging. In this work, the nanoparticles of prodigiosin-loaded zein-pectin were prepared using electrostatic deposition and antisolvent precipitation methods.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. Electronic address:
Transforming poorly soluble active pharmaceutical ingredients (APIs) into a nanoparticulate form is a proven way of improving their dissolution characteristics. The preparation of API nanosuspensions is commonly achieved by wet-stirred media milling. The challenge lies in converting the nanosuspension into a solid dosage form without compromising its re-dispersibility.
View Article and Find Full Text PDFPharmaceutics
October 2024
Department of Pharmacy, University Medical Centre of Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
Background/objectives: The study objective was to determine the physicochemical stability of nab-paclitaxel (Pazenir) ready-to-use (RTU) dispersion for infusion in original glass vials and ready-to-administer (RTA) infusion dispersion in EVA infusion bags.
Methods: Triplicate test dispersions were prepared and stored light protected for a maximum of 28 days either in the original glass vials (RTU) at 2-8 °C or in EVA infusion bags (RTA) at 2-8 °C and at 25 °C. Directly after reconstitution and on days 1, 3, 5, 7, 14, 21, and 28 samples were withdrawn and paclitaxel concentrations assayed by a stability-indicating HPLC method.
Biomacromolecules
December 2024
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
Drug Deliv Transl Res
November 2024
Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!