Background: The understanding of inhaled particle respiratory tract deposition is a key link to understand the health effects of particles or the efficiency for medical drug delivery via the lung. However, there are few experimental data on particle respiratory tract deposition, and the existing data deviates considerably when comparing results for particles > 1 μm.

Methods: We designed an experimental set-up to measure deposition in the respiratory tract for particles > 1 μm, more specifically 2.3 μm, with careful consideration to minimise foreseen errors. We measured the deposition in seventeen healthy adults (21-68 years). The measurements were performed at tidal breathing, during three consecutive 5-minute periods while logging breathing patterns. Pulmonary function tests were performed, including the new airspace dimension assessment (AiDA) method measuring distal lung airspace radius (r). The lung characteristics and breathing variables were used in statistical models to investigate to what extent they can explain individual variations in measured deposited particle fraction. The measured particle deposition was compared to values predicted with whole lung models. Model calculations were made for each subject using measured variables as input (e.g., breathing pattern and functional residual capacity).

Results: The measured fractional deposition for 2.3 μm particles was 0.60 ± 0.14, which is significantly higher than predicted by any of the models tested, ranging from 0.37 ± 0.08 to 0.53 ± 0.09. The multiple-path particle dosimetry (MPPD) model most closely predicted the measured deposition when using the new PNNL lung model. The individual variability in measured particle deposition was best explained by breathing pattern and distal airspace radius (r) at half inflation from AiDA. All models underestimated inter-subject variability even though the individual breathing pattern and functional residual capacity for each participant was used in the model.

Conclusions: Whole lung models need to be tuned and improved to predict the respiratory tract particle deposition of micron-sized particles, and to capture individual variations - a variation that is known to be higher for aged and diseased lungs. Further, the results support the hypothesis that the AiDA method measures dimensions in the peripheral lung and that r, as measured by the AiDA, can be used to better understand the individual variation in the dose to healthy and diseased lungs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594870PMC
http://dx.doi.org/10.1186/s12989-023-00551-9DOI Listing

Publication Analysis

Top Keywords

respiratory tract
16
particle deposition
12
breathing pattern
12
deposition
11
lung
9
lung characteristics
8
particle respiratory
8
tract deposition
8
measured
8
measured deposition
8

Similar Publications

Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.

View Article and Find Full Text PDF

Rhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023-2024 epidemic season using PCR.

View Article and Find Full Text PDF

Respiratory Syncytial Virus and Other Respiratory Viruses in Hospitalized Infants During the 2023-2024 Winter Season in Mexico.

Viruses

December 2024

Infectious Diseases Laboratory, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78210, Mexico.

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in young children. During the COVID-19 pandemic, a significant change in the epidemiology of RSV and other viruses occurred worldwide, leading to a reduction in the circulation of these infectious agents. After the pandemic, the resurgence of seasonal respiratory viruses occurred, but some features of these infections contrast to those registered prior to the pandemic.

View Article and Find Full Text PDF

Nasal spray treatments that inhibit the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) entry into nose and nasopharynx at early stages can be an appropriate approach to stop or delay the progression of the disease. We performed a prospective, randomized, double-blind, placebo-controlled, parallel-group, multicentric, phase II clinical trial comparing the rate of hospitalization due to COVID-19 infection between azelastine 0.1% nasal spray and placebo nasal spray treatment groups.

View Article and Find Full Text PDF

Has COVID-19 Affected the Course of Chickenpox in Children?

Viruses

December 2024

Department of Infectious Diseases and Hepatology, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland.

Objectives Of The Study: The aim of this study was to assess the impact of the COVID-19 pandemic on the epidemiology and clinical course of chickenpox in children based on 6 years of self-reported observations.

Material And Methods: The medical records of 350 patients under 18 years of age hospitalised in the Department of Paediatrics, Infectious Diseases, and Hepatology between 1 January 2018 to 31 December 2023 were analysed retrospectively.

Results: During the analysed period, 350 children were hospitalised due to chickenpox, the fewest in the pandemic period, the greatest number in 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!