A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proteomic characterization of aging-driven changes in the mouse brain by co-expression network analysis. | LitMetric

Proteomic characterization of aging-driven changes in the mouse brain by co-expression network analysis.

Sci Rep

Eisai-Keio Innovation Laboratory for Dementia, Human Biology Integration Foundation, Eisai Co., Ltd., Shinjuku-ku, Tokyo, 160-8582, Japan.

Published: October 2023

Brain aging causes a progressive decline in functional capacity and is a strong risk factor for dementias such as Alzheimer's disease. To characterize age-related proteomic changes in the brain, we used quantitative proteomics to examine brain tissues, cortex and hippocampus, of mice at three age points (3, 15, and 24 months old), and quantified more than 7000 proteins in total with high reproducibility. We found that many of the proteins upregulated with age were extracellular proteins, such as extracellular matrix proteins and secreted proteins, associated with glial cells. On the other hand, many of the significantly downregulated proteins were associated with synapses, particularly postsynaptic density, specifically in the cortex but not in the hippocampus. Our datasets will be helpful as resources for understanding the molecular basis of brain aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598061PMC
http://dx.doi.org/10.1038/s41598-023-45570-wDOI Listing

Publication Analysis

Top Keywords

brain aging
8
cortex hippocampus
8
proteins associated
8
proteins
6
brain
5
proteomic characterization
4
characterization aging-driven
4
aging-driven changes
4
changes mouse
4
mouse brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!