Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Roxadustat (RXD) is an approved drug substances for the treatment of renal anemia. It has poor aqueous solubility and photochemical stability. This study employs a comprehensive approach to enhance the stability and physicochemical properties RXD through coformer selection and characterization. The investigation integrates delta pKa analysis, molecular complementary assessment, molecular electrostatic potential surface analysis, and machine learning techniques to predict potential co-crystal formation and binding interactions between drug molecules and coformers. The co-crystal screening which lead to in a novel RXD-nicotinamide co-crystal (RXD-NA). Experimental characterization underscores the physical and chemical stability of the co-crystals. To elucidate the supramolecular synthons and understand the intermolecular interactions in the RXD-NA co-crystal, Hirshfeld surfaces analysis, quantum theory of atoms in molecules (QTAIM) analysis and non-covalent interaction (NCI) analysis were performed. Computational analysis of photo-isomer formation aligns with experimental observations, further enhancing our understanding of RXD-coformer interactions. RXD-NA co-crystal was found photo-chemically stable as compared to free base API drug substance. This integrated methodology provides a systematic framework for informed co-crystal design, holding promise for optimizing RXD formulations based on molecular interactions and stability considerations. Consequently, this study contributes valuable insights to the field of rational drug design and formulation optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2023.10.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!