Dependence of Intramolecular Hydrogen Bond on Conformational Flexibility in Linear Aminoalcohols.

J Phys Chem A

Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.

Published: November 2023

Intramolecular hydrogen bonds (H-bonds) are abundant in physicochemical and biological processes. The strength of such interaction is governed by a subtle balance between conformational flexibility and steric effect that are often hard to predict. Herein, using linear aminoalcohols NH(CH)OH ( = 2-5) as a model system, we demonstrated the dependence of intramolecular H-bond on the backbone chain length. With sensitive photoacoustic Raman spectroscopy (PARS), the gas-phase Raman spectra of aminoalcohols were measured in both N-H and O-H stretching regions at 298 and 338 K and explained with the aid of quantum chemistry calculations. For = 2-4, two conformers corresponding to the O-H···N intramolecular H-bond and free OH were identified, whereas for = 5, only the free-OH conformer was identified. Compared to free OH, a striking spectral dependence was observed for the intramolecular H-bonded conformer. According to the red shift of the OH-bonded band, the strongest intramolecular H-bond yields in = 4, but the favorable chain length to form an intramolecular hydrogen bond at room temperature was observed in = 3, which corresponds to a six-membered-ring in 3-aminopropanol. This is in good agreement with statistical analysis from the Cambridge Structural Database (CSD) that the intramolecular hydrogen bond is preferred when the six-membered ring is formed. Furthermore, combined with the calculated thermodynamic data at the MP2/aug-cc-pVTZ//M062/6-311++G(d,p) level, the origin of decrease in intramolecular hydrogen-bond formation was ascribed to an unfavorable negative entropy contribution when the backbone chain is further getting longer, which results in the calculated Gibbs free energy optimum changing with increasing temperature from = 4 (0-200 K) to = 3 (200-400 K) and to = 2 (above 400 K). These results will provide new insight into the nature of intramolecular hydrogen bonds at the molecular level and the application of intramolecular hydrogen bonds in rational drug design and supramolecular assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c04674DOI Listing

Publication Analysis

Top Keywords

intramolecular hydrogen
24
hydrogen bond
12
hydrogen bonds
12
intramolecular h-bond
12
intramolecular
10
dependence intramolecular
8
conformational flexibility
8
linear aminoalcohols
8
backbone chain
8
chain length
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!