Young's equation is fundamental to the concept of the wettability of a solid surface. It defines the contact angle for a droplet on a solid surface through a local equilibrium at the three-phase contact line. Recently, the concept of a liquid Young's law contact angle has been developed to describe the wettability of slippery liquid-infused porous surfaces (SLIPS) by droplets of an immiscible liquid. In this work, we present a new method to fabricate biphilic SLIP surfaces and show how the wettability of the composite SLIPS can be exploited with a macroscopic wedge-shaped pattern of two distinct lubricant liquids. In particular, we report the development of composite liquid surfaces on silicon substrates based on lithographically patterning a Teflon AF1600 coating and a superhydrophobic coating (Glaco Mirror Coat Zero), where the latter selectively dewets from the former. This creates a patterned base surface with preferential wetting to matched liquids: the fluoropolymer PTFE with a perfluorinated oil Krytox and the hydrophobic silica-based GLACO with olive oil (or other mineral oils or silicone oil). This allows us to successively imbibe our patterned solid substrates with two distinct oils and produce a composite liquid lubricant surface with the oils segregated as thin films into separate domains defined by the patterning. We illustrate that macroscopic wedge-shaped patterned SLIP surfaces enable low-friction droplet self-propulsion. Finally, we formulate an analytical model that captures the dependence of the droplet motion as a function of the wettability of the two liquid lubricant domains and the opening angle of the wedge. This allows us to derive scaling relationships between various physical and geometrical parameters. This work introduces a new approach to creating patterned liquid lubricant surfaces, demonstrates long-distance droplet self-propulsion on such surfaces, and sheds light on the interactions between liquid droplets and liquid surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634355PMC
http://dx.doi.org/10.1021/acs.langmuir.3c02205DOI Listing

Publication Analysis

Top Keywords

droplet self-propulsion
12
liquid lubricant
12
slippery liquid-infused
8
surfaces
8
solid surface
8
contact angle
8
liquid
8
slip surfaces
8
macroscopic wedge-shaped
8
composite liquid
8

Similar Publications

Motility-Induced Pinning in Flocking System with Discrete Symmetry.

Phys Rev Lett

November 2024

Department of Physics, University of Seoul, Seoul 02504, Korea.

We report a motility-induced pinning transition in the active Ising model for a self-propelled particle system with discrete symmetry. This model was known to exhibit a liquid-gas type flocking phase transition, but a recent study reveals that the polar order is metastable due to droplet excitation. Using extensive Monte Carlo simulations, we demonstrate that, for an intermediate alignment interaction strength, the steady state is characterized by traveling local domains, which renders the polar order short-ranged in both space and time.

View Article and Find Full Text PDF

Light-Triggered Droplet Gating Strategy Based on Janus Membrane Fabricated by Femtosecond Laser.

ACS Nano

November 2024

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China.

The characteristics of the directed transport of liquids based on Janus membranes play a crucial role in practical applications in energy, materials, physics, chemistry, medicine, biology, and other fields. Although extensive progress has been made, it is still difficult to realize the accurate controllability of liquid directional transmembrane transport. The current gating strategies for the directed transport of liquids based on Janus membranes still have some limitations: (a) using magnetic fluid may cause contamination due to the addition of new substances and (b) utilizing hydrophobicity/hydrophilicity conversion of titanium dioxide requires a long switching time (over 30 min).

View Article and Find Full Text PDF

Chemical Programming of Solubilizing, Nonequilibrium Active Droplets.

Acc Chem Res

August 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16082, United States.

ConspectusThe multifunctionality and resilience of living systems has inspired an explosion of interest in creating materials with life-like properties. Just as life persists out-of-equilibrium, we too should try to design materials that are thermodynamically unstable but can be harnessed to achieve desirable, adaptive behaviors. Studying minimalistic chemical systems that exhibit relatively simple emergent behaviors, such as motility, communication, or self-organization, can provide insight into fundamental principles which may enable the design of more complex and life-like synthetic materials in the future.

View Article and Find Full Text PDF

Chemically active droplets display complex self-propulsion behavior in homogeneous surfactant solutions, often influenced by the interplay between diffusiophoresis and Marangoni effects. Previous studies have primarily considered these effects separately or assumed axisymmetric motion. To understand the full hydrodynamics, we investigate the motion of a two-dimensional active droplet under their combined influences using weakly nonlinear analysis and numerical simulations.

View Article and Find Full Text PDF

Single Condensation Droplet Self-Ejection from Divergent Structures with Uniform Wettability.

ACS Nano

March 2024

Laboratory of Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.

Coalescence-induced condensation droplet jumping has been extensively studied for anti-icing, condensation heat transfer, water harvesting, and self-cleaning. Another phenomenon that is gaining attention for potential enhancements is the self-ejection of individual droplets. However, the mechanism underlying this process remains elusive due to cases in which the abrupt detachment of an interface establishes an initial Laplace pressure difference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!