Graph or network data are widely studied in both data mining and visualization communities to review the relationship among different entities and groups. The data facts derived from graph visual analysis are important to help understand the social structures of complex data, especially for data journalism. However, it is challenging for data journalists to discover graph data facts and manually organize correlated facts around a meaningful topic due to the complexity of graph data and the difficulty to interpret graph narratives. Therefore, we present an automatic graph facts generation system, Calliope-Net, which consists of a fact discovery module, a fact organization module, and a visualization module. It creates annotated node-link diagrams with facts automatically discovered and organized from network data. A novel layout algorithm is designed to present meaningful and visually appealing annotated graphs. We evaluate the proposed system with two case studies and an in-lab user study. The results show that Calliope-Net can benefit users in discovering and understanding graph data facts with visually pleasing annotated visualizations.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2023.3326925DOI Listing

Publication Analysis

Top Keywords

graph data
16
data facts
16
data
11
graph
8
annotated node-link
8
node-link diagrams
8
network data
8
facts
7
calliope-net automatic
4
automatic generation
4

Similar Publications

Purpose: To investigate the impact of the distance from the most-anterior surface of the optic to the principal object plane (POP) and from the foremost haptic to the principal object plane (H-POP) on the intraocular lens (IOL) power calculation.

Setting: A tertiary hospital.

Design: Optical simulation and retrospective cross-sectional study.

View Article and Find Full Text PDF

A change language for ontologies and knowledge graphs.

Database (Oxford)

January 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, United States.

Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users and providing mechanisms to make it easier for multiple stakeholders to contribute.

View Article and Find Full Text PDF

As education increasingly relies on data-driven methodologies, accurately predicting student performance is essential for implementing timely and effective interventions. The California Student Performance Dataset offers a distinctive basis for analyzing complex elements that affect educational results, such as student demographics, academic behaviours, and emotional health. This study presents the GNN-Transformer-InceptionNet (GNN-TINet) model to overcome the constraints of prior models that fail to effectively capture intricate interactions in multi-label contexts, where students may display numerous performance categories concurrently.

View Article and Find Full Text PDF

Spatially aligned graph transfer learning for characterizing spatial regulatory heterogeneity.

Brief Bioinform

November 2024

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Spatially resolved transcriptomics (SRT) technologies facilitate the exploration of cell fates or states within tissue microenvironments. Despite these advances, the field has not adequately addressed the regulatory heterogeneity influenced by microenvironmental factors. Here, we propose a novel Spatially Aligned Graph Transfer Learning (SpaGTL), pretrained on a large-scale multi-modal SRT data of about 100 million cells/spots to enable inference of context-specific spatial gene regulatory networks across multiple scales in data-limited settings.

View Article and Find Full Text PDF

Temporal bone CT is an essential technique for diagnosing ossicular chain trauma, and the location of standard observation planes (SOP) is the foundation of imaging diagnosis. The ossicular chain is small in volume, and there are about 11 standard observation planes for ossicular chain diagnosis, so it is a professional and time-consuming task to label SOPs accurately. An automatic annotation method of SOP is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!