The spatial separation of photosystems I and II (PSI and PSII) is thought to be essential for efficient photosynthesis by maintaining a balanced flow of excitation energy between them. Unlike the thylakoid membranes of plant chloroplasts, cyanobacterial thylakoids do not form tightly appressed grana stacks that enforce strict lateral separation. The coexistence of the two photosystems provides a ground for spillover-excitation energy transfer from PSII to PSI. Spillover has been considered as a pathway of energy transfer from the phycobilisomes to PSI and may also play a role in state transitions as means to avoid overexcitation of PSII. Here, we demonstrate a significant degree of energy spillover from PSII to PSI in reconstituted membranes and isolated thylakoid membranes of Thermosynechococcus (Thermostichus) vulcanus and Synechocystis sp. PCC 6803 by steady-state and time-resolved fluorescence spectroscopy. The quantum yield of spillover in these systems was determined to be up to 40%. Spillover was also found in intact cells but to a considerably lower degree (20%) than in isolated thylakoid membranes. The findings support a model of coexistence of laterally separated microdomains of PSI and PSII in the cyanobacterial cells as well as domains where the two photosystems are energetically connected. The methodology presented here can be applied to probe spillover in other photosynthetic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcad127 | DOI Listing |
Nat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Pyrenoid-based CO-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.
Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.
View Article and Find Full Text PDFWater Res
December 2024
School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China; Analytical and Testing Center for Ocean in Western of Guangdong Province, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang, 524088, China. Electronic address:
Corals are representative of typical symbiotic organisms. The coral-algal (Symbiodinium spp.) symbiosis drives the productivity of entire coral reefs.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.
The plant thylakoid membrane hosting the light-harvesting complex (LHCII) is the site of oxygenic photosynthesis. Contrary to the earlier consensus of a protein-driven single lamellar phase of the thylakoid, despite containing 40% non-bilayer-forming lipids, recent experiments confirm the polymorphic state of the functional thylakoid. What, then, is the origin of this polymorphism and what factors control it? The current Letter addresses the question using a total of 617.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308.
Nature produces ATP, the energy currency, by converting solar energy (photophosphorylation) and chemical energy (substrate-level phosphorylation and oxidative phosphorylation). Green electricity, as a significant and sustainable energy carrier, plays a crucial role in achieving a carbon-neutral society. In this work, we established and verified a novel electrodriven phosphorylation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!