Unlabelled: Wound healing is a complex, highly regulated process and is substantially disrupted by diabetes. We show here that human wound healing induces specific epigenetic changes that are exacerbated by diabetes in an animal model. We identified epigenetic changes and gene expression alterations that significantly reduce reepithelialization of skin and mucosal wounds in an in vivo model of diabetes, which were dramatically rescued in vivo by blocking these changes. We demonstrate that high glucose altered FOXO1-matrix metallopeptidase 9 (MMP9) promoter interactions through increased demethylation and reduced methylation of DNA at FOXO1 binding sites and also by promoting permissive histone-3 methylation. Mechanistically, high glucose promotes interaction between FOXO1 and RNA polymerase-II (Pol-II) to produce high expression of MMP9 that limits keratinocyte migration. The negative impact of diabetes on reepithelialization in vivo was blocked by specific DNA demethylase inhibitors in vivo and by blocking permissive histone-3 methylation, which rescues FOXO1-impaired keratinocyte migration. These studies point to novel treatment strategies for delayed wound healing in individuals with diabetes. They also indicate that FOXO1 activity can be altered by diabetes through epigenetic changes that may explain other diabetic complications linked to changes in diabetes-altered FOXO1-DNA interactions.

Article Highlights: FOXO1 expression in keratinocytes is needed for normal wound healing. In contrast, FOXO1 expression interferes with the closure of diabetic wounds. Using matrix metallopeptidase 9 as a model system, we found that high glucose significantly increased FOXO1-matrix metallopeptidase 9 interactions via increased DNA demethylation, reduced DNA methylation, and increased permissive histone-3 methylation in vitro. Inhibitors of DNA demethylation and permissive histone-3 methylation improved the migration of keratinocytes exposed to high glucose in vitro and the closure of diabetic skin and mucosal wounds in vivo. Inhibition of epigenetic enzymes that alter FOXO1-induced gene expression dramatically improves diabetic healing and may apply to other conditions where FOXO1 has a detrimental role in diabetic complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784658PMC
http://dx.doi.org/10.2337/db23-0258DOI Listing

Publication Analysis

Top Keywords

wound healing
16
high glucose
16
permissive histone-3
16
histone-3 methylation
16
skin mucosal
12
mucosal wounds
12
epigenetic changes
12
diabetic skin
8
gene expression
8
wounds in vivo
8

Similar Publications

Anti-cancer effect of midazolam via downregulating YWHAH in papillary thyroid cancer cells.

Discov Oncol

January 2025

Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.1367 Wenyi West Road, Yuhang District, Hangzhou, 311100, People's Republic of China.

The work is aimed to investigate whether midazolam functions in thyroid cancer and reveal the potential mechanism of action. Cell viability was detected by CCK-8 method when treated by varying doses of midazolam to detect the cytotoxicity of midazolam on human thyroid follicular epithelial cell line and thyroid cancer cell lines. In thyroid cancer cells, EDU staining, wound healing and transwell assays were respectively used to detect cell proliferation, migration and invasion.

View Article and Find Full Text PDF

We aimed to investigate the wound-healing, antioxidant, and anti-inflammatory effects of pterostilbene (PTS) on human gingival fibroblasts (GF). Different concentrations of PTS were applied to GFs and cell viability was evaluated by MTT assay. GFs were stimulated by lipopolysaccharide (LPS) and the study groups were determined as LPS, LPS + 1 μM PTS, LPS + 10 μM PTS, and control.

View Article and Find Full Text PDF

Novel technique and outcomes of umbilical reconstruction during cytoreductive surgery; a multi-centre study.

Tech Coloproctol

January 2025

Peritonectomy and Liver Cancer Unit, Department of Surgery, St George Hospital, Kogarah, NSW, Australia.

Background: The goal of cytoreductive surgery for peritoneal malignancy is to remove all macroscopic disease, which occasionally requires the excision of the umbilicus. While the absence of the umbilicus can be aesthetically undesirable for patients, umbilical reconstruction is rarely performed due to the perceived complexity and increased risk of wound infections (Sakata et al. in Colorectal Dis 23:1153-1157, 2021).

View Article and Find Full Text PDF

The present study investigates the potential contribution of Photobiomodulation (PBM) to the regeneration of the bone following the extraction of the first mandibular molar in rats. The study evaluates the efficacy of PBM, using both Low-Level Laser Therapy (LLLT) and Light-Emitting Diode Therapy (LEDT), as promotors of osteoblastic activity and the formation of new bone. Study design, setting, and sample: 45 male Wistar rats were divided randomly into three groups of 15 individuals - (i) control group (left lower molar removed only), (ii) the LLL group (molar removed, followed by LLLT), and (iii) the LED group (molar removed, followed by LEDT).

View Article and Find Full Text PDF

Dry crude pomegranate peel extract as a bio-input for medicinal pharmaceutical gel with healing activity.

Chem Biodivers

January 2025

UFES: Universidade Federal do Espirito Santo, Center of Exact, Natural and Health Sciences, Alto Universitário, Alegre, BRAZIL.

The sustainable use of pomegranate peel, a by-product of the food industry, is gaining importance in developing pharmaceutical bio-inputs, aligning with circular economy practices and waste reduction. This study explores the application of dry crude pomegranate peel extract (PPE) as a bio-input for medicinal gels with wound healing properties. PPE was extracted via percolation in ethanol and freeze-dried.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!