Green innovation is an important driving force for high-quality development and is vital for reinvigorating the old industrial bases in Northeast China. As such, this study investigates the spatial-temporal evolution characteristics and factors influencing green innovation efficiency (GIE) in Northeast China from 2005 to 2020, using the super-efficient EBM-Malmquist model, kernel density estimation, and random forest model. The results show the following. (1) The "growth effect" of technological change is the main force driving GIE improvement; the "horizontal effect" of pure technical efficiency change has started to play an important role; and the club convergence characteristics of GIE in Northeast China have started to be optimized. (2) GIE in Northeast China shows significant spatial differentiation. The urban agglomeration of Mid-southern Liaoning and Harbin-Changchun has had high values for GIE, indicating that green innovation has a cyclic cumulative effect and the spatial pattern of green innovation needs to be further optimized. (3) The random forest model is more accurate and provides more trustworthy results compared with the traditional multiple linear regression model. The results of random forest model measurement illustrate that the number of digital economy enterprises, public finance expenditure, GDP per capita, and vegetation coverage play a positive role in promoting GIE. The proportion of the non-farm population and industrial agglomeration plays a negative role in GIE. In the same period, the contribution of the number of digital economy enterprises≥0.41, public expenditure ≥0.47, GDP per capita≥0.39, and vegetation coverage≥0.36 to GIE reach maximum values and then remain unchanged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30525-5 | DOI Listing |
Dalton Trans
January 2025
Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
A deeper understanding of the mechanisms underlying transition metal-catalyzed transformation is crucial for developing innovative strategies to synthesize chiral organoselenium compounds. In this study, we developed and investigated a three-layer chirality relay model for the rhodium-catalyzed asymmetric hydroselenation of alkenes through density functional theory (DFT) calculations. In the back layer of this model, the four bulky substituents on the phosphorus atom of the bidentate chiral MeO-BIPHEP ligand were positioned on axial and equatorial bonds, thereby influencing the configuration of the middle layer.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
College of Engineering, Agriculture Aviation Innovation Lab, South China Agriculture University, Guangzhou, China.
Biochar is a novel approach to remediating heavy metal-contaminated soil. Using various organic amendments like phyllosilicate-minerals (PSM), compost, biochar (BC) and sulfur-modified biochar (SMB), demonstrates superior adsorption capacity and stability compared to unmodified biochar (BC). The adsorption mechanisms of SMB are identified for its potential to increase soil-pH and reduce available cadmium (Cd).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Desalination Technology Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.
Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!