Context: In the present work, we investigated the adsorption mechanism of natural sodium (Na), potassium (K), and lithium (Li) atoms and their respective ion on two nanostructures: boron-nitride nanotubes (BNNTs) and beryllium-oxide nanotubes (BeONTs). The main goal of this research is to calculate the gain voltage for Na, K, and Li ionic batteries. Density function theory (DFT) calculations indicated that the adsorption energy between Na + is higher than that of the other cations, and this is particularly clear in the BeONT. Furthermore, gain voltage calculations showed that BNNTs generate a higher potential than BeONTs, with the most significant difference observed in BNNT/Na + . This research provides theoretical insights into the potential uses of these nanostructures as anodes in Na, K, and Li-ion batteries.
Method: Density function theory used to compute the ground state properties for BeONT and BNNT with and without selected atoms and their ions (Li, K, and Na). B3LYP used for exchange correlation between electrons and ions, and 6-31G* basis set used for all atoms and ions. Gauss Sum 2.2 software used for estimate the density of state (DOS) for all structure under investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-023-05752-9 | DOI Listing |
Nat Mater
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
All-solid-state lithium metal batteries promise high levels of safety and energy density, but their practical realization is limited by low Li reversibility, limited cell loading and demand for high-temperature and high-pressure operation, stemming from solid-state electrolyte (SSE) low-voltage reduction and high-voltage decomposition, and from lithium dendrite growth. Here we concurrently address these challenges by reporting that a family of reductive electrophiles gain electrons and cations from metal-nucleophile materials (here a Li sulfide SSE) upon contact to undergo electrochemical reduction and form interphase layers (named solid reductive-electrophile interphase) on material surfaces. The solid reductive-electrophile interphase is electron blocking and lithiophobic, prevents SSE reduction, suppresses Li dendrites and supports high-voltage cathodes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Materials Discovery, University College London, London WC1E 7JE, U.K.
Paper is an ideal platform for creating flexible and eco-friendly electronic systems. Leveraging the synergistic integration of zero- and two-dimensional materials, it unfolds a broad spectrum of applications within the realm of the Internet of Things (IoT), spanning from wearable electronics to smart packaging solutions. However, for paper without a polymer coating, the rough and porous nature presents significant challenges as a substrate for electronics, and the absence of well-established fabrication methods further hinders its application in wearable electronics.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark.
Objectives: Developmental and epileptic encephalopathies (DEEs) caused by pathogenic variants in SCN8A are associated with difficult-to-treat and early-onset seizures, developmental delay/intellectual disability, impaired quality of life, and increased risk of early mortality. High doses of sodium channel blockers are typically used to treat SCN8A-DEE caused by gain-of-function (GoF) variants. However, seizures are often drug resistant, and only a few patients achieve seizure freedom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!