Case series and literature review of primary hyperoxaluria type 1 in Chinese patients.

Urolithiasis

Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.

Published: October 2023

Based on the single-center case reports and all reported patients with primary hyperoxaluria type 1 (PH1) in China, this study discussed the clinical and genetic characteristics of this disease retrospectively. We reported and validated a novel genetic variation c.302 T > G: the clinical phenotypes of the two siblings were similar, in which both had onset in infancy, mainly manifested as renal insufficiency, and died within 6 months out of end-stage renal disease. The literature review is the first to summarize the Chinese patients with PH1 up to now. Forty-eight Chinese patients were included, containing 7 adults and 41 children. The median onset age was 51 months, and the ratio of male to female was 2.69:1. It showed a poor prognosis: 51.1% of Chinese primary hyperoxaluria type 1 patients suffered from end-stage renal disease, and 38.9% of patients died. Urolithiasis was the most common clinical manifestation both in adults and children, while infant-onset patients generally presented with renal insufficiency and had a higher mortality of 75.0%. One hundred and forty-nine AGXT mutant alleles are currently known in the Chinese population, c.33dupC and c.815_816insGA were the most common AGXT genes, accounting for 12.0% and 10.1% of allele frequencies, respectively. The exons 1, 2, 6, and 8 were the most common locations of gene variants, accounting for 78% of all variants, which will be promising targets of DNA sequencing for primary hyperoxaluria type 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598140PMC
http://dx.doi.org/10.1007/s00240-023-01494-8DOI Listing

Publication Analysis

Top Keywords

primary hyperoxaluria
16
hyperoxaluria type
16
chinese patients
12
literature review
8
renal insufficiency
8
end-stage renal
8
renal disease
8
adults children
8
patients
7
chinese
5

Similar Publications

Synthesis and LDHA Inhibitory Activity of New Stiripentol-Related Compounds of Potential Use in Primary Hyperoxaluria.

Int J Mol Sci

December 2024

Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain.

Human lactate dehydrogenase A (LDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria (PH). Recently, LDHA inhibition has been validated as a safe therapeutic method to try to control the PH disease. Stiripentol (STP) is an approved drug used in the treatment of seizures associated with Dravet's syndrome (a severe form of epilepsy in infancy) which, in addition, has been drawing interest in recent years also for potentially treating PH, due to its LDHA inhibitory activity.

View Article and Find Full Text PDF

A 50-year-old woman with kidney failure complained of back pain and an inability to walk. The medical history included hypothyroidism, nephrolithiasis, and resistant anemia aligned with several transfusions. The examination showed hepatosplenomegaly, lower limb weakness, absence of reflexes, and lack of sensations with a sensory level T6.

View Article and Find Full Text PDF

Title: Identification of a novel GRHPR mutation in primary hyperoxaluria type 2 and establishment of patient-derived iPSC line.

Hum Cell

January 2025

Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.

This research delves into Primary Hyperoxaluria Type 2 (PH2), an autosomal recessive disorder precipitated by a unique case of compound heterozygous deleterious mutations in the GRHPR gene, specifically the intron2/3 c.214-2 T > G and the exon8 c.864-865delTG, leading to a premature stop codon at p.

View Article and Find Full Text PDF

Aim: Autosomal recessive primary hyperoxalurias (PH) are genetic disorders characterised by elevated oxalate production. Mutations in genes involved in glycoxylate metabolism are the underlying cause of PH. Type 1 PH (PH1) results in malfunctioning of alanine-glyoxylate aminotransferase enzymes of liver due to a change in the genetic sequence of alanine-glyoxylate aminotransferase (AGXT) gene.

View Article and Find Full Text PDF

Cutting through the stones: Unlocking therapeutic potential with gene editing tools for primary hyperoxaluria type 1.

Mol Ther

December 2024

Department of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!