Lyme disease, caused by (or ) , is a complex multisystemic disorder that includes Lyme neuroborreliosis resulting from the invasion of both the central and peripheral nervous systems. However, factors that enable the pathogen to cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) are still not well understood. The objective of this study was to identify the factors required for BBB transmigration. We utilized a transwell BBB model based on human brain-microvascular endothelial cells and focused on investigating the Rrp2-RpoN-RpoS pathway, a central regulatory pathway that is essential for mammalian infection by . Our results demonstrated that the Rrp2-RpoN-RpoS pathway is crucial for BBB transmigration. Furthermore, we identified OspC, a major surface lipoprotein controlled by the Rrp2-RpoN-RpoS pathway, as a significant contributor to BBB transmigration. Constitutive production of OspC in a mutant defective in the Rrp2-RpoN-RpoS pathway did not rescue the impairment in BBB transmigration, indicating that this pathway controls additional factors for this process. Two other major surface lipoproteins controlled by this pathway, DbpA/B and BBK32, appeared to be dispensable for BBB transmigration. In addition, both the surface lipoprotein OspA and the Rrp1 pathway, which are required colonization in the tick vector, were found not required for BBB transmigration. Collectively, our findings using transwell assays uncover another potential role of the Rrp2-RpoN-RpoS pathway in BBB transmigration of and invasion into the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652863PMC
http://dx.doi.org/10.1128/iai.00227-23DOI Listing

Publication Analysis

Top Keywords

bbb transmigration
28
rrp2-rpon-rpos pathway
24
bbb
9
pathway
9
blood-brain barrier
8
transmigration
8
lyme disease
8
required bbb
8
major surface
8
surface lipoprotein
8

Similar Publications

T cell induced expression of Coronin-1A facilitates blood-brain barrier transmigration of breast cancer cells.

Sci Rep

December 2024

Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.

In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.

View Article and Find Full Text PDF

Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease.

J Neuroinflammation

December 2024

Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.

Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF).

View Article and Find Full Text PDF

Selection of LRP1 ligand phage-displayed single domain antibody that transmigrates BBB.

J Drug Target

December 2024

Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile.

Effective drug delivery to the central nervous system (CNS) remains a challenge due to the blood-brain barrier (BBB). Macromolecules such as proteins and peptides are unable to cross BBB and have poor therapeutic efficacy due to little or no drug distribution. A promising alternative is the conjugation of a drug to a shuttle molecule that can reach the CNS via receptor-mediated transcytosis (RMT).

View Article and Find Full Text PDF

Background: Despite antiretroviral treatment (cART), aging people living with HIV (PWH) are more susceptible to neurocognitive impairment (NCI) probably due to synergistic/additive contribution of traditional cerebrovascular risk factors. Specifically, transmigration of inflammatory CD16+ monocytes through the altered blood brain barrier (BBB) may exacerbate cerebral small vessel disease (CSVD), a known cause of vascular cognitive impairment.

Methods: PWH on cART (n=108) and age, sex, and Reynold's cardiovascular risk score-matched uninfected individuals (PWoH, n=111) were enrolled.

View Article and Find Full Text PDF

Background And Hypothesis: Angiogenesis triggered by inflammation increases BBB permeability and facilitates macrophage transmigration. In the midbrain, we have discovered molecular alterations related to the blood-brain barrier (BBB), including endothelial cell changes associated with macrophage diapedesis, in neuroinflammatory schizophrenia and bipolar disorder, but changes in angiogenesis are yet to be reported. Hypothesis: We expected to discover molecular evidence of altered angiogenesis in the midbrain in individuals with schizophrenia and bipolar disorder compared to controls, with these changes more evident in "high" inflammation schizophrenia as compared to "low" inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!