The escalating prevalence of Type 2 Diabetes (T2D) represents a substantial burden on global healthcare systems, especially in regions such as Mexico. Existing diagnostic techniques, although effective, often require invasive procedures and labor-intensive efforts. The promise of artificial intelligence and data science for streamlining and enhancing T2D diagnosis is well-recognized; however, these advancements are frequently constrained by the limited availability of comprehensive patient datasets. To mitigate this challenge, the present study investigated the efficacy of Generative Adversarial Networks (GANs) for augmenting existing T2D patient data, with a focus on a Mexican cohort. The researchers utilized a dataset of 1019 Mexican nationals, divided into 499 non-diabetic controls and 520 diabetic cases. GANs were applied to create synthetic patient profiles, which were subsequently used to train a Random Forest (RF) classification model. The study's findings revealed a notable improvement in the model's diagnostic accuracy, validating the utility of GAN-based data augmentation in a clinical context. The results bear significant implications for enhancing the robustness and reliability of Machine Learning tools in T2D diagnosis and management, offering a pathway toward more timely and effective patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594466PMC
http://dx.doi.org/10.3390/diseases11040134DOI Listing

Publication Analysis

Top Keywords

generative adversarial
8
adversarial networks
8
t2d diagnosis
8
optimizing clinical
4
clinical diabetes
4
diabetes diagnosis
4
diagnosis generative
4
networks evaluation
4
evaluation validation
4
validation escalating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!