Lanthanide-based perovskite oxide semiconductors have garnered significant attention due to their exceptional electrical and sensing properties, making them promising candidates for gas sensing applications. This review paper focuses on developments and the impact of doping in lanthanide-based perovskite oxide semiconductors for gas sensing purposes. The review explores the factors influencing gas sensing performance, such as operating temperature, dopant selection, and target gas species. The role of dopants in enhancing gas sensing selectivity, sensitivity, response/recovery times, and stability is discussed in detail. Comparisons are drawn between doped perovskite oxide semiconductors, undoped counterparts, and other gas-sensing materials. Practical applications of lanthanide-based perovskite oxide semiconductor gas sensors are outlined, including environmental monitoring, industrial process control, and healthcare. The review also identifies current challenges and future perspectives in the field, such as the exploration of novel doping strategies and integration with emerging technologies like the Internet of Things (IoT). The findings emphasize the potential of these materials in advancing gas sensing technology and the importance of continued research in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay01420gDOI Listing

Publication Analysis

Top Keywords

gas sensing
24
perovskite oxide
20
lanthanide-based perovskite
16
oxide semiconductors
16
gas
8
semiconductors gas
8
sensing applications
8
sensing
7
perovskite
5
oxide
5

Similar Publications

Direct Hot Solid-Liquid Extraction (DH-SLE): A High-Yield Greener Technique for Lipid Recovery from Coffee Beans.

Plants (Basel)

January 2025

Departamento de Química, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil.

Soxhlet extraction is a method recommended by the Association of Official Analytical Chemists (AOAC) to determine the lipid content in plant samples. Generally, n-hexane (toxicity grade 5) is used as the solvent (≈300 mL; ≈30 g sample) at boiling temperatures (69 °C) for long times (≤16 h) under a chilled water reflux (≈90 L/h), proportionally aggravated by the number of repetitions and samples determined. In this sense, the technique is neither safe nor sustainable for the analyst or the environment.

View Article and Find Full Text PDF

This study investigates the surface energies and work function changes in ZnGaO(111) surfaces with different atomic terminations using ab initio density functional theory. It explores the interactions of gas molecules such as NO, NO, and CHCOCH with Ga-terminated, O-terminated, and Ga-Zn-O-terminated surfaces. This study reveals previously unreported insights into how O-terminated surfaces exhibit enhanced reactivity with NO, resulting in significant work function changes of +6.

View Article and Find Full Text PDF

Real-Time Quantification of Gas Leaks Using a Snapshot Infrared Spectral Imager.

Sensors (Basel)

January 2025

Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.

We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.

View Article and Find Full Text PDF

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!