Background: Mast-Cell Expressed Membrane Protein-1 (MCEMP1) is higher in Idiopathic Pulmonary Fibrosis (IPF) patients with increased risk of death and poor outcomes. Here we seek to establish the mechanistic role of MCEMP1 in pulmonary fibrosis.

Methods: MCEMP1 expression was analyzed by single-cell RNA sequencing, immunofluorescence in Peripheral Blood Mononuclear Cells (PBMC) as well as in lung tissues from IPF patients and controls. Chromatin Immunoprecipitation (ChiP) and Proximity Ligation Assay (PLA) were used to study the transcriptional regulation of . Transient RNA interference and lentivirus transduction were used to knockdown and knock-in MCEMP1 in THP-1 cells to study chemotaxis, adhesion, and migration. Bulk RNA sequencing was used to identify the mechanisms by which MCEMP1 participates in monocyte function. Active RHO pull-down assay was used to validate bulk RNA sequencing results.

Results: We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared to controls. MCEMP1 was upregulated by TGFβ at the mRNA and protein levels in THP-1. TGFβ-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 -regulatory elements within the promoter. In terms of its function, we found that MCEMP1 regulates TGFβ-mediated monocyte chemotaxis, adhesion, and migration. 400 differentially expressed genes were found to increase after TGFβ stimulation of THP-1, further increased in MCEMP1 knock-in cells treated with TGFβ and decreased in MCEMP1 knockdown cells treated with TGFβ. GO annotation analysis of these genes showed enrichment for positive regulation of RHO GTPase activity and signal transduction. While TGFβ enhanced RHO GTPase activity in THP-1 cells, this effect was attenuated following MCEMP1 knockdown.

Conclusion: MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF. MCEMP1 is regulated by TGFβ and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFβ in RHO activity. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592658PMC
http://dx.doi.org/10.1101/2023.10.07.561349DOI Listing

Publication Analysis

Top Keywords

mcemp1
16
alveolar macrophages
16
chemotaxis adhesion
16
adhesion migration
16
classical monocytes
12
monocytes alveolar
12
pulmonary fibrosis
12
rna sequencing
12
mast-cell expressed
8
expressed membrane
8

Similar Publications

Mortality and morbidity from tuberculous meningitis (TBM) are common, primarily due to inflammatory response to infection, yet the underlying mechanisms remain poorly understood. We aimed to uncover genes and pathways associated with TBM pathogenesis and mortality, and determine the best predictors of death, utilizing whole-blood RNA sequencing from 281 Vietnamese adults with TBM, 295 pulmonary tuberculosis (PTB), and 30 healthy controls. Through weighted gene co-expression network analysis, we identified hub genes and pathways linked to TBM severity and mortality, with a consensus analysis revealing distinct patterns between HIV-positive and HIV-negative individuals.

View Article and Find Full Text PDF

Introduction: Septic shock, a severe manifestation of infection-induced systemic immune response, poses a critical threat resulting in life-threatening multi-organ failure. Early diagnosis and intervention are imperative due to the potential for irreversible organ damage. However, specific and sensitive detection tools for the diagnosis of septic shock are still lacking.

View Article and Find Full Text PDF

Background: This study aims to identify a novel gene signature for coronary artery disease (CAD), explore the role of immune cell infiltration in CAD pathogenesis, and assess the cell function of mast cell-expressed membrane protein 1 () in human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL).

Methods: To identify differentially expressed genes (DEGs) of CAD, datasets GSE24519 and GSE61145 were downloaded from the Gene Expression Omnibus (GEO) database using the R "limma" package with < 0.05 and |log2 FC| > 1.

View Article and Find Full Text PDF

This integrated study combines bioinformatics, machine learning, and Mendelian randomization (MR) to discover and validate molecular biomarkers for sepsis diagnosis. Methods include differential expression analysis, weighted gene co-expression network analysis (WGCNA) for identifying sepsis-related modules and hub genes, and functional enrichment analyses to explore the roles of hub genes. Machine learning algorithms identify 3 diagnostic genes - CD177, LDHA, and MCEMP1 - consistently highly expressed in sepsis patients.

View Article and Find Full Text PDF

Background: Both ischemic stroke (IS) and myocardial infarction (MI) are caused by vascular occlusion that results in ischemia. While there may be similarities in their mechanisms, the potential relationship between these 2 diseases has not been comprehensively analyzed. Therefore, this study explored the commonalities in the pathogenesis of IS and MI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!