The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592886PMC
http://dx.doi.org/10.1101/2023.10.03.560722DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
computational pipeline
12
binding pocket
8
pipeline
5
discovery low
4
low data
4
data regimes
4
regimes leveraging
4
leveraging computational
4
pipeline discovery
4

Similar Publications

Background And Objective: To determine whether there is disproportionate reporting of hepatobiliary disorders in the United States (US) FDA Adverse Event Reporting System (FAERS) for individuals prescribed ketamine or esketamine.

Design: We identified Medical Dictionary for Regulatory Activities (MedDRA) terms in the FAERS related to hepatobiliary disorders.

Main Measures: Formulations of ketamine and esketamine were evaluated for the proportionality of reporting for each hepatobiliary disorder parameter using the reporting odds ratio (ROR).

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP.

View Article and Find Full Text PDF

Discovery of CZY43 as a new small-molecule degrader of pseudokinase HER3.

Eur J Med Chem

January 2025

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China. Electronic address:

The pseudokinase HER3 emerges as a promising anti-cancer target, especially for HER2-driven breast cancer and EGFR-mediated non-small cell lung cancer. However, it is challenging to target HER3 by ATP-competitive small molecules because HER3 is catalytically impaired. Herein, we report the discovery of a series of HER3 degraders by connecting a HER3 binder bosutinib with a hydrophobic tag adamantane.

View Article and Find Full Text PDF

The impact of LRP4 mutations on hepatocellular carcinoma recurrence and immunotherapy response.

Hepatology

January 2025

State Key Laboratory of Liver Research, Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!