Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present a new approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592785PMC
http://dx.doi.org/10.1101/2023.10.10.561766DOI Listing

Publication Analysis

Top Keywords

nanobody tethering
8
pathway selective
8
highly biased
4
biased agonism
4
agonism gpcr
4
gpcr ligands
4
ligands nanobody
4
tethering ligand-induced
4
ligand-induced activation
4
activation protein-coupled
4

Similar Publications

Unlabelled: Proteins commonly self-assemble to create liquid or solid condensates with diverse biological activities. The mechanisms of assembly are determined by each protein's sequence and cellular context. We previously developed distributed amphifluoric FRET (DAmFRET) to analyze sequence determinants of self-assembly in cells.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Expression-Dependent Tumor Pretargeting via Engineered Avidity.

Mol Pharm

January 2025

Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.

Selective delivery of therapeutic modalities to tumor cells via binding of tumor-selective cell-surface biomarkers has empowered substantial advances in cancer treatment. Yet, tumor cells generally lack a truly specific biomarker that is present in high density on tumor tissue while being completely absent from healthy tissue. Rather, low but nonzero expression in healthy tissues results in on-target, off-tumor activity with detrimental side effects that constrain the therapeutic window or prevent use altogether.

View Article and Find Full Text PDF

Targeting PD-1 T cells with small-format immunocytokines enhances IL-12 antitumor activity.

Mol Ther

January 2025

DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain. Electronic address:

Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies (Nbs) targeting mouse and human programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Both PD-1- and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared with IL-12 alone.

View Article and Find Full Text PDF

Uptake of nucleobases and ascorbate is an essential process in all living organisms mediated by SLC23 transport proteins. These transmembrane carriers operate via the elevator alternating-access mechanism, and are composed of two rigid domains whose relative motion drives transport. The lack of large conformational changes within these domains suggests that the interdomain-linkers act as flexible tethers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!