Polymorphisms in the gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of , , is also essential for controlling (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis and found that deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact T1 immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592944PMC
http://dx.doi.org/10.1101/2023.10.03.560720DOI Listing

Publication Analysis

Top Keywords

mtb infection
24
control mtb
12
type interferon
12
interferon signaling
12
cell expansion
8
infection neutrophils
8
mtb
7
infection
7
type
4
type ifn
4

Similar Publications

Background: Tuberculosis (TB) is a leading cause of death worldwide with over 90% of reported cases occurring in low- and middle-income countries (LMICs). Pre-treatment loss to follow-up (PTLFU) is a key contributor to TB mortality and infection transmission.

Objectives: We performed a scoping review to map available evidence on interventions to reduce PTLFU in adults with pulmonary TB, identify gaps in existing knowledge, and develop a conceptual framework to guide intervention implementation.

View Article and Find Full Text PDF

Background: Exosome is a small extracellular vesicle with a diameter of 30 to 150 nm that is secreted by cells. Mtb and other bacteria can also secrete extracellular vesicles, which carry characteristics and information about the pathogen. Here, we compare the concentration of exosomes and the Mtb antigen in exosomes of tuberculosis patients aiming to evaluate whether exosomes can be used as diagnostic markers of tuberculosis at different stages.

View Article and Find Full Text PDF

Single-cell analysis reveals ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs.

Sci Adv

January 2025

Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA.

(MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden.

View Article and Find Full Text PDF

Background: Globally, over one-third of pulmonary tuberculosis (TB) disease diagnoses are made based on clinical criteria after a negative bacteriological test result. There is limited information on the factors that determine clinicians' decisions to initiate TB treatment when initial bacteriological test results are negative.

Methods And Findings: We performed a systematic review and individual patient data meta-analysis using studies conducted between January 2010 and December 2022 (PROSPERO: CRD42022287613).

View Article and Find Full Text PDF

( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!