A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mapping the topography of spatial gene expression with interpretable deep learning. | LitMetric

Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns such as gene expression gradients. We address these issues by deriving a of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the . Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth that model both continuous gradients and discontinuous spatial variation in the expression of individual genes. We validate GASTON by showing that it accurately identifies spatial domains and marker genes across several biological systems. In SRT data from the brain, GASTON reveals gradients of neuronal differentiation and firing, and in SRT data from a tumor sample, GASTON infers gradients of metabolic activity and epithelial-mesenchymal transition (EMT)-related gene expression in the tumor microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592770PMC
http://dx.doi.org/10.1101/2023.10.10.561757DOI Listing

Publication Analysis

Top Keywords

gene expression
28
spatial gene
12
expression
8
interpretable deep
8
deep learning
8
expression gradients
8
spatial domains
8
srt data
8
spatial
7
gene
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!