Unlabelled: Oomycetes are heterotrophic protists that share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a separate and distant region of the eukaryotic tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls. This is a key trait in the pathology of many oomycetes, as the plant cell wall represents a primary barrier to pathogen invasion and a rich source of carbohydrates. Many of the HGT gene families identified have undergone multiple rounds of duplication. Using a combination of phylogenomic analysis and functional assays, we investigate the diversification of a horizontally-transferred xyloglucanase gene family in the model oomycete species . Our analyses detect 11 genes retained in among a complex pattern of gene duplications and losses. Using a phenotype assay, based on heterologous expression in yeast, we show that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional xyloglucanase variants analysed subtend an ancestral node close to the fungi-oomycetes gene transfer, suggesting the horizontally-transferred gene was a xyloglucanase. Expression of xyloglucanase paralogs in triggers distinct patterns of reactive oxygen species (ROS) generation, demonstrating that enzyme variants differentially stimulate pattern-triggered immunity in plants. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze production of variant breakdown profiles, suggesting that secretion of multiple xyloglucanase variants increases efficiency of xyloglucan breakdown, as well as potentially diversifying the range of Damage-Associated Molecular Patterns (DAMPs) released during pathogen attack. We suggest that such patterns of protein neofunctionalization, and variant host responses, represent an aspect of the Red Queen host-pathogen co-evolutionary dynamic.
Significance Statement: The oomycetes are a diverse group of eukaryotic microbes that include some of the most devastating pathogens of plants. Oomycetes perceive, invade, and colonize plants in similar ways to fungi, in part because they acquired the genes to attack and feed on plants from fungi. These genes are predicted to be useful to oomycete plant pathogens because they have undergone multiple rounds of gene duplication. One key enzyme for attacking plant cell wall structures is called xyloglucanase. Xyloglucanase in the oomycetes has undergone multiple rounds of gene duplication, leading to variants including an enzyme with a C-terminal extension that increases activity. Some xyloglucanase variants trigger unique patterns of reactive oxygen species (ROS) , and generate different profiles of cell wall breakdown products - such outcomes could act to mystify and increase the workload of the plant immune system, allowing successful pathogens to proliferate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592688 | PMC |
http://dx.doi.org/10.1101/2023.10.09.561229 | DOI Listing |
J Cancer Res Ther
December 2024
Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.
View Article and Find Full Text PDFChem Biodivers
January 2025
National Center for Energy Sciences and Nuclear Techniques: Centre National de l'Energie des Sciences et des Techniques Nucleaires, Biology and Medical Research Unit, Rabat 10001, Morocco, 10001, Rabat, MOROCCO.
Infectious diseases remain a major global health concern. Cistus ladanifer, a plant commonly employed in Moroccan traditional medicine, has been identified as a potential antiviral candidate. This study aimed to evaluate the antiviral activity of C.
View Article and Find Full Text PDFCells
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
Erythroleukemia, a complex myeloproliferative disorder presenting as acute or chronic, is characterized by aberrant proliferation and differentiation of erythroid cells. Although nootkatone, a sesquiterpene derived from grapefruit peel and Alaska yellow cedar, has shown anticancer activity predominantly in solid tumors, its effects in erythroleukemia remain unexplored. This study aimed to investigate the impact of nootkatone and its derivatives on erythroleukemia.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Department of Urology, Ewha Womans University College of Medicine, Seoul, Korea.
Purpose: Although the mechanism underlying interstitial cystitis/bladder pain syndrome (IC/BPS) remains unclear, oxidative stress is suggested to be implicated in IC/BPS development. Sea buckthorn (SB; L.) contains several compounds with antioxidant properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!