Cooperative interactions in protein-protein interfaces demonstrate the interdependency or the linked network-like behavior of interface interactions and their effect on the coupling of proteins. Cooperative interactions also could cause ripple or allosteric effects at a distance in protein-protein interfaces. Although they are critically important in protein-protein interfaces it is challenging to determine which amino acid pair interactions are cooperative. In this work we have used Bayesian network modeling, an interpretable machine learning method, combined with molecular dynamics trajectories to identify the residue pairs that show high cooperativity and their allosteric effect in the interface of G protein-coupled receptor (GPCR) complexes with G proteins. Our results reveal a strong co-dependency in the formation of interface GPCR:G protein contacts. This observation indicates that cooperativity of GPCR:G protein interactions is necessary for the coupling and selectivity of G proteins and is thus critical for receptor function. We have identified subnetworks containing polar and hydrophobic interactions that are common among multiple GPCRs coupling to different G protein subtypes (Gs, Gi and Gq). These common subnetworks along with G protein-specific subnetworks together confer selectivity to the G protein coupling. This work underscores the potential of data-driven Bayesian network modeling in elucidating the intricate dependencies and selectivity determinants in GPCR:G protein complexes, offering valuable insights into the dynamic nature of these essential cellular signaling components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592737PMC
http://dx.doi.org/10.1101/2023.10.09.561618DOI Listing

Publication Analysis

Top Keywords

gpcrg protein
16
bayesian network
12
protein-protein interfaces
12
protein interactions
8
protein coupling
8
cooperative interactions
8
interactions coupling
8
network modeling
8
protein
7
interactions
7

Similar Publications

G protein-coupled receptors (GPCRs) regulate multiple cellular responses and represent highly successful therapeutic targets. The mechanisms by which agonists activate the G protein are unclear for many GPCR families, including the bitter taste receptors (TAS2Rs). We ascertained TAS2R5 properties by live cell-based functional assays, direct binding affinity measurements using optical resonators, and atomistic molecular dynamics simulations.

View Article and Find Full Text PDF

Most neurons are influenced by multiple neuromodulatory inputs that converge on common effectors. Mechanisms that route these signals are key to selective neuromodulation but are poorly understood. G protein-gated inwardly rectifying K (GIRK or Kir3) channels mediate postsynaptic inhibition evoked by G protein-coupled receptors (GPCRs) that signal via inhibitory G proteins.

View Article and Find Full Text PDF

Positive allosteric modulation of a GPCR ternary complex.

Sci Adv

September 2024

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.

The activation of a G protein-coupled receptor (GPCR) leads to the formation of a ternary complex between agonist, receptor, and G protein that is characterized by high-affinity binding. Allosteric modulators bind to a distinct binding site from the orthosteric agonist and can modulate both the affinity and the efficacy of orthosteric agonists. The influence allosteric modulators have on the high-affinity active state of the GPCR-G protein ternary complex is unknown due to limitations on attempting to characterize this interaction in recombinant whole cell or membrane-based assays.

View Article and Find Full Text PDF

The activation of heterotrimeric G proteins through G-protein-coupled receptors (GPCRs) is a ubiquitous signaling mechanism in eukaryotic biology. The three principal molecular components of this cascade are the GPCR, Gα subunit, and Gβγ subunit. Measurement of interactions between these components and their downstream effectors in live cells is paramount to understanding how cells fine-tune their physiology in response to many external stimuli.

View Article and Find Full Text PDF

Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors.

Mol Pharmacol

August 2024

Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts

G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!