Purpose: This study explored the feasibility of a streamlined pin-shaped ridge filter (pin-RF) design for single-energy proton FLASH planning.

Methods: An inverse planning framework integrated within a TPS was established for FLASH planning. The framework involves generating a IMPT plan based on downstream energy modulation strategy (IMPT-DS), followed by a nested spot reduction process to iteratively reduce the total number of pencil beam directions (PBDs) and energy layers along each PBD for the IMPT-DS plan. The IMPT-DS plan is then translated into the pin-RFs for a single-energy IMPT plan (IMPT-RF). The framework was validated on three lung cases, quantifying the FLASH dose of the IMPT-RF plan using the FLASH effectiveness model and comparing it with the reference dose of a conventional IMPT plan to assess the clinical benefit of the FLASH planning technique.

Results: The IMPT-RF plans closely matched the corresponding IMPT-DS plans in high dose conformity, with minimal changes in V7Gy and V7.4Gy for the lung (< 5%) and small increases in Dmax for other OARs (< 3.2 Gy). Comparing the FLASH doses to the doses of corresponding IMPT-RF plans, drastic reductions of up to ~33% were observed in Dmax for OARs in the high-to-moderate-dose regions with negligible changes in Dmax for OARs in low-dose regions. Positive clinical benefits were observed with notable reductions of 18.4-33.0% in Dmax for OARs in the high-dose regions. However, in the moderate-to-low-dose regions, only marginal positive or even negative clinical benefit for OARs were observed, such as increased lung V7Gy and V7.4Gy (16.4-38.9%).

Conclusions: A streamlined pin-RF design for single-energy proton FLASH planning was validated, revealing positive clinical benefits for OARs in the high dose regions. The coarsened design of the pin-RF demonstrates potential cost efficiency and efficient production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593077PMC

Publication Analysis

Top Keywords

flash planning
16
dmax oars
16
design single-energy
12
single-energy proton
12
proton flash
12
impt plan
12
flash
8
pin-rf design
8
planning framework
8
impt-ds plan
8

Similar Publications

Very High-Energy Electron Therapy Toward Clinical Implementation.

Cancers (Basel)

January 2025

Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.

The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.

View Article and Find Full Text PDF

Large language models (LLMs) offer promising possibilities in mental health, yet their ability to assess disorders and recommend treatments remains underexplored. This quantitative cross-sectional study evaluated four LLMs (Gemini (Gemini 2.0 Flash Experimental), Claude (Claude 3.

View Article and Find Full Text PDF

This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.

View Article and Find Full Text PDF

Significance: Accurate values of skin optical properties are essential for developing reliable computational models and optimizing optical imaging systems. However, published values show a large variability due to a variety of factors, including differences in sample collection, preparation, experimental methodology, and analysis.

Aim: We aim to explore the influence of storage conditions on the optical properties of the excised skin from 400 to 1100 nm.

View Article and Find Full Text PDF

Soil erosion susceptibility maps and raster dataset for the hydrological basins of North Africa.

Sci Data

January 2025

University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.

Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!