Purpose: Heart failure is a serious complication after acute myocardial infarction (AMI). It is crucial to investigate the mechanism of action of empagliflozin in the treatment of heart failure.
Methods: A total of 20 wild type (WT) male C57BL6/J mice were used to establish a model of heart failure after myocardial infarction and randomly divided into 2 groups: treatment group and control group. The treatment group was treated with empagliflozin, and the control group was treated with placebo. After 8 weeks of treatment, mouse heart tissues were collected for next generation sequencing. Bioinformatics methods were used to screen the key genes. Finally, the correlation between clinical data and gene expression was analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of key genes.
Results: A mouse model of heart failure was successfully constructed. By DEG analysis, a total of 740 DEGs in the treatment group vs the control group were obtained. Dendritic cells, granulocytes, follicular B, plasma cell, cDC1, cDC2, pDC and neutrophils were 8 different immune cells identified by immunoinfiltration analysis. Through WGCNA, the turquoise module with the highest correlation with the above differential immune cells was selected. One hundred and forty-two immune-related DEGs were obtained by taking intersection of the DEGs and the genes of the turquoise module. Col17a1 and Gria4 were finally screened out as key immune-related genes via PPI analysis and machine learning. Col17a1 was significantly up-regulated, while Gria4 was significantly down-regulated in the treatment group. At the same time, the expression level of Col17a1 was significantly correlated with left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS) and left ventricular internal dimension systole (LVIDs).
Conclusion: Col17a1 and Gria4 are key immune-related genes of empagliflozin in the treatment of heart failure after myocardial infarction. This study provides a scientific basis for elucidating the mechanism of action of empagliflozin in treating heart failure after myocardial infarction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590601 | PMC |
http://dx.doi.org/10.2147/JIR.S428747 | DOI Listing |
J Cardiovasc Imaging
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Background: There are insufficient studies to determine whether sodium-glucose cotransporter type 2 inhibitors (SGLT2i) will help reduce early diabetic cardiomyopathy, especially in patients without documented cardiovascular disease.
Methods: We performed a single center, prospective observation study. A total of 90 patients with type 2 diabetes patients without established heart failure or atherosclerotic cardiovascular disease were enrolled.
Orphanet J Rare Dis
January 2025
Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
Background: There is no unified prognostic scoring system for light chain cardiac amyloidosis (AL-CA), particularly stage IIIb AL-CA. This study aimed to use invasive haemodynamic information to investigate markers that can more accurately evaluate the prognosis of patients with stage IIIb AL-CA.
Methods: In this retrospective cohort study, we conducted invasive haemodynamic measurements concurrently with myocardial biopsies to diagnose AL-CA.
Cardiovasc Diabetol
January 2025
Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.
Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.
Pharm Res
January 2025
Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Purpose: Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF.
Methods: The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology.
NPJ Digit Med
January 2025
Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany.
Aging affects the 12-lead electrocardiogram (ECG) and correlates with cardiovascular disease (CVD). AI-ECG models estimate aging effects as a novel biomarker but have only been evaluated on single ECGs-without utilizing longitudinal data. We validated an AI-ECG model, originally trained on Brazilian data, using a German cohort with over 20 years of follow-up, demonstrating similar performance (r = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!