A guide to epigenetics in leukaemia stem cells.

Mol Oncol

Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, UK.

Published: December 2023

Leukaemia stem cells (LSCs) are the critical seed for the growth of haematological malignancies, driving the clonal expansion that enables disease initiation, relapse and often resistance. Specifically, they display inherent phenotypic and epigenetic plasticity resulting in complex heterogenic diseases. In this review, we discuss the key principles of deregulation of epigenetic processes that shape this disease evolution. We consider measures to define and quantify clonal heterogeneity, combining information from recent studies assessing mutational, transcriptional and epigenetic landscapes at single cell resolution in myeloid neoplasms (MN). We highlight the importance of integrating epigenetic and genetic information to better understand inter- and intra-patient heterogeneity and discuss how this understanding further informs evolution and progression trajectories and subsequent clinical response in MN. Under this topic, we also discuss efforts to identify mechanisms of resistance, by longitudinal analyses of patient samples. Finally, we highlight how we might target these aberrant epigenetic processes for better therapeutic outcomes and to potentially eradicate LSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701772PMC
http://dx.doi.org/10.1002/1878-0261.13544DOI Listing

Publication Analysis

Top Keywords

leukaemia stem
8
stem cells
8
epigenetic processes
8
epigenetic
5
guide epigenetics
4
epigenetics leukaemia
4
cells leukaemia
4
cells lscs
4
lscs critical
4
critical seed
4

Similar Publications

Hematopoietic stem cell transplantation (HSCT) is widely used to treat patients with life-threatening hematologic and immune system disorders. Current nontargeted chemo-/radiotherapy conditioning regimens cause tissue injury and induce an array of immediate and delayed adverse effects, limiting the application of this life-saving treatment. The growing demand to replace canonical conditioning regimens has led to the development of alternative approaches, such as antibody-drug conjugates, naked antibodies, and CAR T cells.

View Article and Find Full Text PDF

Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, -FPD), caused by monoallelic deleterious germline variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) using natural killer (NK) cells has emerged as a promising therapeutic strategy for acute myeloid leukemia (AML), addressing challenges such as chemotherapy resistance and high relapse rates. Over the years, clinical trials and studies have explored various sources of NK cells, including ex vivo expanded NK cell lines, CAR-NK cells, peripheral blood-derived NK cells, and umbilical cord blood-derived NK cells. These therapies have demonstrated varying degrees of therapeutic efficacy, ranging from transient anti-leukemia activity to sustained remission in select patient groups.

View Article and Find Full Text PDF

Despite the success of the CD19xCD3 T cell engager blinatumomab in B-cell acute lymphoblastic leukemia (B-ALL), treatment failure is common and can manifest with antigen loss and extramedullary disease (EMD) relapse. To understand the impact of leukemia genetics on outcomes, we reviewed 267 adult patients with B-ALL treated with blinatumomab and used next generation sequencing to identify molecular alterations. Patients received blinatumomab for relapsed/refractory (R/R) disease (n=150), minimal residual disease (MRD+) (n=88), upfront as induction (n=10), or as consolidation in MRD- state (n=19).

View Article and Find Full Text PDF

Comparison of blinatumomab and chimeric antigen receptor T cells pre-haploidentical hematopoietic stem cell transplantation for pediatric Philadelphia chromosome negative B-cell acute lymphoblastic leukemia.

Chin Med J (Engl)

January 2025

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing 100044, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!