Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654210PMC
http://dx.doi.org/10.1007/s00062-023-01359-yDOI Listing

Publication Analysis

Top Keywords

freiburg neuropathology
4
neuropathology case
4
case conference
4
conference headache
4
headache mental
4
mental confusion
4
confusion mild
4
mild hemiparesis
4
hemiparesis a 68-year-old
4
a 68-year-old patient
4

Similar Publications

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.

Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.

View Article and Find Full Text PDF

Due to the increasing workload of pathologists, the need for automation to support diagnostic tasks and quantitative biomarker evaluation is becoming more and more apparent. Foundation models have the potential to improve generalizability within and across centers and serve as starting points for data efficient development of specialized yet robust AI models. However, the training of foundation models themselves is usually very expensive in terms of data, computation, and time.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!