Magnesium oxide nanoparticles (MgO NPs) have been attracted by the scientific community for their combating action against heavy metal stress in plants. However, their role towards the mitigation of arsenic (As) induced toxicity is still obscure. In the present study, MgO NPs were synthesized through the green route and assessed their efficacy towards the reduction of As accumulation and phytotoxicity in As-stressed rice cultivar MTU-1010 under laboratory conditions. Initially, rice seedlings were grown under separate and combined applications of As (10 mg/L) and MgO NPs (0, 10, 50, and 100 mg/L) and further analyzed plant growth attributes and As accumulation in rice seedlings. Characterization of biosynthesized MgO NPs by UV-Vis spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis showed the cubic in shape, and crystalline nature (73.10%) with average size ranges from 17-23 nm. The growth experiment showed a significant (p < 0.05) increase in seed germination, seedling growth, photosynthetic and other pigments content, and biomass accumulation in rice seedlings under the combined application of As (10 mg/L) and MgO NPs (50 mg/L) as compared to only As (10 mg/L) treatment. Additionally, As exposure resulted in declined primary metabolites such as soluble sugars and protein. However, the application of MgO NPs exhibited the alleviation of As toxicity through significant (p < 0.05) reduction of As accumulation by 34 and 53% in roots and 44 and 62% in shoots of rice seedlings under 50 and 100 mg/L MgO NPs supplementations, respectively and restored the accumulation of the primary metabolites. Furthermore, MgO NPs demonstrated the ability to scavenge reactive oxygen species (ROS) like hydrogen peroxide (HO) and superoxide anion (O), through significant (p < 0.05) promotion of non-enzymatic (carotenoid, anthocyanin, flavonoid, and proline) and enzymatic (CAT, POD, and SOD) antioxidant defence under As stress. These findings highlighted the potential of green synthesized MgO NPs towards the mitigation of As contamination in rice plants. However, future study is necessary to unfold the actual mechanisms responsible for the protective effects of MgO NPs and to screen out the optimal dose to be used to formulate a potent nanofertilizer for sustainable rice production in metal-contaminated soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30411-0 | DOI Listing |
J Photochem Photobiol B
January 2025
Department of Applied Science and Technology, A C Tech, Anna University, Chennai-600025, Tamil Nadu, India.
A novel method for synthesizing nanomaterials involves microbial or phytochemical nano-factories, which offer an eco-friendly, cost-effective, and reliable approach to producing clean and reproducible products. In this study, magnesium oxide nanoparticles (MgO NPs) were synthesized using Avicennia marina, a marine plant, as both a nucleation and stabilizing agent. The MgO NPs were characterized for crystallinity, cut-off wavelength, morphology, thermal stability, and surface properties using XRD, EDX, BET, UV-Visible spectroscopy, DLS, zeta potential analysis, SEM, TEM, TGA/DTA, and PL spectroscopy.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
Electronics and Nano Devices Lab, Faculty of Science, South Valley University, Qena, Egypt.
(neem) extract was used to biologically synthesize magnesium oxide nanoparticles (MgO NPs). The synthesized NPs were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and UV-vis spectroscopy. Antioxidant, anticancer, antibacterial, antidiabetic, and anti-inflammatory activities were analyzed for the synthesized MgO NPs and neem extract.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China. Electronic address:
The harmful influence caused by cadmium (Cd) to agriculture is severe and enduring. Efforts to reduce the damage by Cd to crop is an important topic. In this study, we investigated the effect of MgO NPs on tobacco seedlings' growth under Cd stress and explored its mechanism.
View Article and Find Full Text PDFSci Rep
November 2024
Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!