The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593830PMC
http://dx.doi.org/10.1038/s41467-023-42496-9DOI Listing

Publication Analysis

Top Keywords

proteome stability
8
n-terminal acetylation
8
stem cell
8
cell differentiation
8
metabolic regulation
4
regulation proteome
4
stability n-terminal
4
acetylation controls
4
controls male
4
male germline
4

Similar Publications

The Anti-Neuroinflammatory Effects of Cepharanthine in Uric Acid-Induced Neuroinflammation.

J Ethnopharmacol

January 2025

Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, China.

Ethnopharmacological Relevance: Cepharanthine (CEP) is an alkaloid extracted from Stephania cephalantha Hayata, a traditional Chinese medicine (TCM) renowned for its heatclearing and dehumidifying properties. For centuries, Stephania cephalantha Hayata has been employed in the treatment of a wide range of diseases, including pain, edema, inflammation, and fever.

Aim Of The Study: Our research aims to investigate the role and mechanism of Cepharanthine in ameliorating uric acid (UA) induced neuroinflammatory responses.

View Article and Find Full Text PDF

Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway.

J Adv Res

January 2025

Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Afliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China. Electronic address:

Introduction: Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.

Objectives: To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions.

J Adv Res

January 2025

Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:

Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.

Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.

Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.

View Article and Find Full Text PDF

The nucleolin antagonist N6L and paclitaxel combination treatment could be a new promising therapeutic strategy for pancreatic ductal adenocarcinoma therapy.

Eur J Pharmacol

January 2025

Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, F-94010 Creteil, France. Electronic address:

Pancreatic cancer (PCa) is one of the most devastating cancers with few clinical signs and no truly effective therapy. In recent years, our team has demonstrated that nucleolin antagonists such as N6L could be a therapeutic alternative for this disease. In order to study a possible clinic development of N6L (multivalent pseudopeptide), we undertook to study the effect of combination of N6L with chemotherapies classically used for PCa on the survival of pancreatic cancer cells.

View Article and Find Full Text PDF

Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!