Massively parallel reporter assay (MPRA) is a high-throughput analysis method that can simultaneously investigate the activity of thousands of regulatory elements in the genome. MPRA introduces a uniquely identified barcode on a conventional luciferase reporter gene vector, sequences the DNA barcode before transfection and the mRNA barcode after transfection by next-generation sequencing technology, and uses the ratio of mRNA and DNA barcode reads to analyze the activity of cis-regulatory elements. Since MPRA was proposed, it has been widely used in the identification of genomic cis-regulatory elements and functional variants, the effect of post-transcriptional regulation on phenotypes and so on. In this review, we summarize the development history, basic principles, experimental procedures and statistical analysis methods of MPRA, and its applications in post-transcriptional regulation and cis-regulatory elements. It also provides prospects for its development and useful references for researchers in related fields to understand and apply MPRA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.16288/j.yczz.23-180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!