Biochar is an ample source of organic carbon prepared by the thermal breakdown of biomass. Lignocellulosic biomass is a promising precursor for biochar production, and has several applications in various industries. In addition, biochar can be applied for environmental revitalization by reducing the negative impacts through intrinsic mechanisms. In addition to its environmentally friendly nature, biochar has several recyclable and inexpensive benefits. Nourishing and detoxification of the environment can be undertaken using biochar by different investigators on account of its excellent contaminant removal capacity. Studies have shown that biochar can be improved by activation to remove toxic pollutants. In general, biochar is produced by closed-loop systems; however, decentralized methods have been proven to be more efficient for increasing resource efficiency in view of circular bio-economy and lignocellulosic waste management. In the last decade, several studies have been conducted to reveal the unexplored potential and to understand the knowledge gaps in different biochar-based applications. However, there is still a crucial need for research to acquire sufficient data regarding biochar modification and management, the utilization of lignocellulosic biomass, and achieving a sustainable paradigm. The present review has been articulated to provide a summary of information on different aspects of biochar, such as production, characterization, modification for improvisation, issues, and remediation have been addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140515 | DOI Listing |
Int J Biol Macromol
January 2025
Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.
View Article and Find Full Text PDFAmmonia, a major stress-inducing factor in aquaculture, contributes a significant challenge in maintaining sustainable fish production. Addressing this issue requires environmentally and economically sustainable solutions. This study explores the use of readily available and environmentally friendly porous lignocellulosic luffa sponge as a biostimulator, with a combination of three medicinal and aromatic plants(MAPs) viz.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:
The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.
The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!