Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Secondary active transporters play pivotal roles in regulating ion and molecule transport across cell membranes, with implications in diseases like cancer. However, studying transporters via biochemical experiments poses challenges. We propose an effective computational approach to identify secondary active transporters from membrane protein sequences using pre-trained language models and deep learning neural networks. Our dataset comprised 290 secondary active transporters and 5,420 other membrane proteins from UniProt. Three types of features were extracted - one-hot encodings, position-specific scoring matrix profiles, and contextual embeddings from the ProtTrans language model. A multi-window convolutional neural network architecture scanned the ProtTrans embeddings using varying window sizes to capture multi-scale sequence patterns. The proposed model combining ProtTrans embeddings and multi-window convolutional neural networks achieved 86% sensitivity, 99% specificity and 98% overall accuracy in identifying secondary active transporters, outperforming conventional machine learning approaches. This work demonstrates the promise of integrating pre-trained language models like ProtTrans with multi-scale deep neural networks to effectively interpret transporter sequences for functional analysis. Our approach enables more accurate computational identification of secondary active transporters, advancing membrane protein research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2023.10.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!