A benzimidazole-based probe, BIPMA (2-(1H-benzo[d]imidazol-2-yl)-N-(pyridin-2-ylmethyl)aniline), was designed and synthesized to detect Cu ions. BIPMA exhibited a fluorescent "turn-on" mechanism when bound to Cu ions in an acetonitrile/water mixture (5:5, v/v, HEPES 10 mM, pH 7.4) owing to the synergistic effect of the chelation-enhanced fluorescence and internal charge-transfer mechanisms. Moreover, the BIPMA probe effectively detected nanomolar-range concentrations (0-400 nM) of Cu ions in an aqueous system with a detection limit of 4.80 nM; this value is significantly lower than that set by the U.S. Environmental Protection Agency (≈20 μM). Additionally, BIPMA showed an ultrafast response to Cu ions, with a maximum intensity achieved 25 s after adding Cu. Furthermore, BIPMA detected Cu ions in solutions with a pH range of 5-11, without being influenced by pH, underscoring its applicability under various physiological conditions. Density functional theory studies revealed that internal charge transfer was responsible for emission. Finally, BIPMA effectively detected Cu ions in real water samples and living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123555DOI Listing

Publication Analysis

Top Keywords

ions aqueous
8
effectively detected
8
detected ions
8
ions
7
bipma
6
simple turn-on
4
turn-on fluorescent
4
fluorescent chemosensor
4
chemosensor ultrafast
4
ultrafast highly
4

Similar Publications

In the present study, magnetic-calcined bamboo composite adsorbents (MCBC200, MCBC400, MCBC600, MCBC800, and MCBC1000) were prepared, and their physicochemical characteristics (scanning electron microscope images, differential thermogravimetric analysis, Fourier transform-IR, specific surface area, surface functional groups, and point of zero charge [pH]) were evaluated. Furthermore, the adsorption capacity of methylene blue (MB, cationic dye) using the prepared adsorbents was assessed. The value of pH and the specific surface area of MCBC400 were 7.

View Article and Find Full Text PDF

Effect of Ion-Specific Hydration Forces on the Stability of Water Films on Calcite Surfaces.

Langmuir

March 2025

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.

The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers.

View Article and Find Full Text PDF

Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Extract and Their Separation Properties in Lubricant-Water Emulsions.

Nanomaterials (Basel)

March 2025

Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru.

The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm.

View Article and Find Full Text PDF

Carboxymethyl Cellulose Surface Modification Alleviates the Toxicity of Fe-MOFs to Rice and Improves Iron Absorption.

Nanomaterials (Basel)

February 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

Iron-based metal-organic frameworks (Fe-MOFs) are widely used for agricultural chemical delivery due to their high loading capacity, and they also have the potential to provide essential iron for plant growth. Therefore, they hold significant promise for agricultural applications. Evaluating the plant biotoxicity of Fe-MOFs is crucial for optimizing their use in agriculture.

View Article and Find Full Text PDF

Separators, regulating the ion transport channels between electrodes, are crucial for maintaining the properties of electrochemical batteries. However, sluggish ion transport and desolvation kinetics in aqueous zinc-ion batteries (AZIBs) cause uneven ion flux at the separator-electrode interface, accelerating Zn dendrite growth. Herein, we systematically dissect ionic favorable hydrogen bond chemistry in a hybrid separator engineered through rational boron nitride (BN) doping into polyacrylonitrile (PAN) separators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!