An ultra-sensitive electrochemical biosensor for the detection of procalcitonin in sepsis patients' serum, using a Cu-BHT-based thin film.

Talanta

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, PR China. Electronic address:

Published: February 2024

Procalcitonin (PCT) is a polypeptide produced by the parafollicular cells of the thyroid gland and serves as a vital marker for the diagnosis and treatment of sepsis and other infectious diseases, as well as multiple organ failure, due to its high expression levels in affected patients. This article reports on a highly sensitive electrochemical biosensor based on MOF composite materials, based on Cu-BHT, for detecting PCT levels. The surface of the glassy carbon electrode may have better charge transfer resistance owing to the nano-composite material made of Cu-BHT, chitosan, and AuNPs. At the same time, the anti-PCT antibody may also be covalently bonded to the composite material and measure PCT concentration using electrochemical impedance spectroscopy (EIS). The results of the investigation demonstrate that the sensor's response has excellent linear conjunction with the logarithm of PCT concentration under optimum circumstances. The detection limit (LOD) is 14.579 × 10 μg/mL, and the linear range of detection is 10 μg/mL to 10 μg/mL. Simultaneously, we successfully applied this method to detect serum PCT before and after treatment in different sepsis patients and compared it with chemiluminescence immunoassay. The findings indicate that the proposed method holds promising potential for timely diagnosis and treatment of sepsis patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.125325DOI Listing

Publication Analysis

Top Keywords

treatment sepsis
12
electrochemical biosensor
8
diagnosis treatment
8
pct concentration
8
sepsis patients
8
pct
5
ultra-sensitive electrochemical
4
biosensor detection
4
detection procalcitonin
4
sepsis
4

Similar Publications

Impact of hemoadsorption with CytoSorb® on meropenem and piperacillin exposure in critically ill patients in a post-CKRT setup: a single-center, retrospective data analysis.

Intensive Care Med Exp

January 2025

Freie Universität Berlin and Humboldt-Universität Zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.

Purpose: CytoSorb® (CS) adsorbent is a hemoadsorption filter for extracorporeal blood purification often integrated into continuous kidney replacement therapy (CKRT). It is primarily used in critically ill patients with sepsis and related conditions, including cytokine storms and systemic inflammatory responses. Up to now, there is no evidence nor recommendation for the use of CS filters in sepsis (22).

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Background: The pathogenesis of sepsis is thought to be linked to a dysregulated immune response, particularly that involving neutrophils. We have developed a granulocyte adsorption column as a "decoy organ," which relocates the massive inflammation in organs in the body to a blood purification column. This study was conducted to assess the safety and experimental effectiveness of granulocyte monocyte adsorption apheresis-direct hemoperfusion (G1-DHP) in the treatment of patients with sepsis, using a prospective, multicenter design.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Brodalumab, a humanized monoclonal antibody that targets the interleukin-17 receptor A, is primarily used to manage moderate-to-severe plaque psoriasis. Although it has demonstrated favorable efficacy and safety in clinical trials, the strict inclusion and exclusion criteria may not fully reflect its safety profile in real-world settings. As its use becomes more widespread in clinical practice, understanding its safety in real-world applications is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!