Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ubiquity of various organic micropollutants in global water and wastewater has raised considerable concern about their cost-efficient elimination. This study reported that the novel UV/FeTiO/S(IV) system could accomplish superior abatement of different micropollutants (e.g., carbamazepine, CMZ) in 30-45 min with excellent reusability and stability of FeTiO. In addition, this system functioned effectively to remove roxarsone and As(III)/As(V) by catalytic oxidation and adsorption, respectively. Mechanistic investigations suggested the dual roles of S(IV) in enhancing pollutant oxidation, i.e., promoted Fe(II)/Fe(III) cycle and photocatalysis. These processes facilitated the continuous generation of multiple oxidizing intermediates (e.g., hydroxyl radicals, sulfate radicals, and singlet oxygen), in which the last one was first proposed as the main contributor in iron-mediated S(IV)-based oxidation processes. Based on the product identification, the transformation pathways of four different micropollutants were tentatively unraveled. The in silico prediction suggested the lower environmental risks of the final reaction products than the precursors. Particularly, the structural alteration of humic acid was analyzed, indicating an increased O/C ratio after oxidative treatment. Overall, this study has implications for developing an efficient oxidation technique for removing multiple micropollutants in water and facilitating the mechanistic reactivity modulation of the S(IV)-based oxidation strategies in water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!