The present study describes synthesizing a novel series of polyfunctionalized pyridine congeners 1-18 and assessed for cytotoxic efficacies versus HCT-116, MCF-7, and HepG-2 among one non-cancerous BJ-1 human normal cell. Most compounds were precisely potent anticancer candidate drugs. The molecular impact of the most active compounds 9, 10, 11, 13, 15, and 17 was evaluated after MCF-7 treatment. The gene expression of pro- and ant-apoptosis markers P53, Bax, Caspase-3 and Bcl-2 as well as VEGFR-2 and HER2 were determined. Compounds 13 and 15 induced upregulation of pro-apoptosis of P53, Bax, Caspase-3 and downregulation of anti-apoptosis Bcl-2 gene. However, compound 15 showed higher effect compared to 13 and respective control. Moreover, a slight reduction in HER2 gene expression was detected due to compound 15 treatment, while VEGFR-2 gene was upregulated. In agreement, the immunoblotting analysis showed higher accumulation of P53, Bax, Caspase-3 proteins and of decrease the Bcl-2 protein levels. Furthermore, docking studies united with molecular dynamic simulation exposed compounds 13 and 15 fitting in the middle of the active site at the interface linking the ATP binding site and the allosteric hydrophobic binding pocket. Finally, we performed Petra/Osiris/ Molinspiration (POM) analysis for the newly synthesized compounds. The evaluation of primary in silico parameters revealed significant differences among individual polyfunctionalized pyridine compounds, highlighting the most promising candidates. These preliminary results may help in coordinating and initiating other research projects focused on polyfunctionalized pyridine compounds, especially those with predicted bioactivity, low toxicity, optimal ADME parameters, and promising perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2023.106910 | DOI Listing |
Beilstein J Org Chem
June 2024
College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China.
An efficient protocol for the synthesis of polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-]pyridine-3,4b,5,6,7(1)-pentacarboxylates was developed by a three-component reaction. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates and 5,6-unsubstituted 1,4-dihydropyridines in refluxing acetonitrile afforded polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-]pyridine-3,4b,5,6,7(1)-pentacarboxylates in high yields and with high diastereoselectivity. The reaction was finished by in situ generation of activated 5-(alkylimino)cyclopenta-1,3-dienes from addition of alkyl isocyanide to two molecules of but-2-ynedioates and sequential formal [3 + 2] cycloaddition reaction with 5,6-unsubstituted 1,4-dihydropyridine.
View Article and Find Full Text PDFMol Pharm
July 2024
Department of Integrative Biotechnology & Translational Medicine, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
Bioorg Chem
September 2024
Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain. Electronic address:
In the search for new small molecules for the therapy of neuropathic pain, we found that 2-{3-[N-(1-benzylpiperidin-4-yl)propyl]amino}-6-[N-methyl-N-(prop-2-yn-1-yl)amino]-4-phenylpyridine-3,5-dicarbonitrile (12) induced a robust antiallodynic effect in capsaicin-induced mechanical allodynia, a behavioural model of central sensitization, through σR antagonism. Furthermore, administration of compound 12 to neuropathic animals, fully reversed mechanical allodynia, increasing its mechanical threshold to levels that were not significantly different from those found in paclitaxel-vehicle treated mice or from basal levels before neuropathy was induced. Ligand 12 is thus a promising hit-compound for the therapy of neuropathic pain.
View Article and Find Full Text PDFBioorg Chem
December 2023
Basic Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST) P.O. Box 179, New Borg El-Arab City Postal Code 21934, Alexandria, Egypt; Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt.
The present study describes synthesizing a novel series of polyfunctionalized pyridine congeners 1-18 and assessed for cytotoxic efficacies versus HCT-116, MCF-7, and HepG-2 among one non-cancerous BJ-1 human normal cell. Most compounds were precisely potent anticancer candidate drugs. The molecular impact of the most active compounds 9, 10, 11, 13, 15, and 17 was evaluated after MCF-7 treatment.
View Article and Find Full Text PDFChem Commun (Camb)
June 2023
Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
A visible/solar-light-induced electron-donor-acceptor (EDA)-aggregated/mediated radical cyclization between ()-2-(1,3-diarylallylidene)malononitriles and thiophenols leads to poly-functionalized pyridines. The two reacting partners form an EDA complex that absorbs light and triggers the single-electron transfer (SET) to generate a thiol radical, which undergoes addition/cyclization with dicyanodiene through the formation of C-S and C-N bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!