Magnetic Soft Robot for Minimally Invasive Urethral Catheter Biofilm Eradication.

ACS Nano

International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia.

Published: November 2023

Catheter-related biofilm infection remains the main problem for millions of people annually, affecting morbidity, mortality, and quality of life. Despite the recent advances in the prevention of biofilm formation, alternative methods for biofilm prevention or eradication still should be found to avoid traumatic and expensive removal or catheter replacement. Soft magnetic robots have drawn significant interest in favor of remote control, fast response, and wide space for design. In this work, we demonstrated magnetic soft robots as a minimally invasive, safe, and effective approach to eliminate biofilm from urethral catheters (20 Fr or 5.1 mm in diameter). Seven designs of the robot were fabricated (size 4.5 × 15 mm), characterized, and tested in the presence of a rotating magnetic field. As a proof-of-concept, we demonstrated the superior efficiency of biofilm removal on the model of a urethral catheter using a magnetic robot, reaching full eradication for the octagram-shaped robot (velocity 2.88 ± 0.6 mm/s) at a 15 Hz frequency and a 10 mT amplitude. These findings are helpful for the treatment of biofilm-associated catheter contamination, which allows an increase in the catheter wearing time without frequent replacement and treatment of catheter-associated infections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c10127DOI Listing

Publication Analysis

Top Keywords

magnetic soft
8
minimally invasive
8
urethral catheter
8
biofilm
6
magnetic
5
catheter
5
robot
4
soft robot
4
robot minimally
4
invasive urethral
4

Similar Publications

The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.

View Article and Find Full Text PDF

Theory of giant magnetoelastic effect in soft systems.

Sci Adv

January 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Having been predominantly observed in rigid metal and metal alloys since 1865, the magnetoelastic effect was recently experimentally discovered in a soft matter system and used as a new working mechanism for energy and health care applications. Here, a theoretical framework is presented and proven to be universally accurate and robust in interpreting the giant magnetoelastic effect across soft systems subjected to various deformation modes, micromagnet concentrations, magnetization profiles, and geometric structures. The theory uncovers substantial, unique magnetoelastic phenomena in soft systems, including the magnetic pole reversal under localized compression.

View Article and Find Full Text PDF

Chronic non-bacterial osteomyelitis (CNO) is an inflammatory bone disease, usually diagnosed in childhood. It is characterized by the presence of multifocal or unifocal osteolytic lesions that can cause bone pain and soft tissue swelling. CNO is known to have soft tissue involvement.

View Article and Find Full Text PDF

Background: Leveraging non-invasive ultra-high field, 7 Tesla (7T) MRI, with increased signal-to-noise ratio and improved soft tissue contrast afforded by 7T allows us to accurately map tissue microstructure. We aim to use 7T MR Elastography (MRE), 7T Diffusion Tensor Imaging (DTI), 3T amyloid-PET, and Preclinical Alzheimer Cognitive Composite (PACC) score to determine the relationships between these metrics in a cohort of older individuals with either normal cognition (CN), mild cognitive impairment (MCI), or Alzheimer's Disease (AD).

Methods: 7T MRE, 7T DTI, 3T PET (Fig.

View Article and Find Full Text PDF

Postpartum Septic Osteoarthritis: A case series study.

Tunis Med

December 2024

University of Sousse, Faculty of Medicine of Ibn ElJazzar Sousse, 4002, Farhat Hached university Hôpital, Service of rheumatology, 4031, Sousse, Tunisia.

Introduction-Aim: Postpartum septic osteoarthritis is a rare but serious condition often misdiagnosed due to overlap with common postpartum symptoms like pelvic pain and joint stiffness. This case series aims to describe the clinical, bacteriological, and radiological characteristics of postpartum septic osteoarthritis, as well as the treatment approaches and patient outcomes. Methods: A retrospective case series was conducted at Farhat Hached University Hospital, from 2006 to 2022, involving patients with confirmed postpartum septic osteoarthritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!