Chronic lymphocytic leukemia (CLL) is one of the most diagnosed forms of leukemia worldwide and it is usually classified into two forms: indolent and aggressive. These two forms are characterized by distinct molecular features that drive different responses to treatment and clinical outcomes. In this context, a better understanding of the molecular landscape of the CLL forms may potentially lead to the development of new drugs or the identification of novel biomarkers. Human endogenous retroviruses (HERVs) are a class of transposable elements that have been associated with the development of different human cancers, including different forms of leukemias. However, no studies about HERVs in CLL have ever been reported so far. Here, we present the first locus-specific profiling of HERV expression in both the aggressive and indolent forms of CLL. Our analyses revealed several dysregulations in HERV expression occurring in CLL and some of them were specific for either the aggressive or indolent form of CLL. Such results were also validated by analyzing an external cohort of CLL patients and by RT-qPCR. Moreover, in silico analyses have shown relevant signaling pathways associated with them suggesting a potential involvement of the dysregulated HERVs in these pathways and consequently in CLL development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622969PMC
http://dx.doi.org/10.1073/pnas.2307593120DOI Listing

Publication Analysis

Top Keywords

human endogenous
8
endogenous retroviruses
8
chronic lymphocytic
8
lymphocytic leukemia
8
cll
8
herv expression
8
aggressive indolent
8
forms
6
expression signature
4
signature human
4

Similar Publications

Functional evaluation and clinical classification of BRCA2 variants.

Nature

January 2025

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants.

View Article and Find Full Text PDF

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

Huntington's disease (HD), a neurodegenerative disease, affects approximately 30,000 people in the United States, with 200,000 more at risk. Mitochondrial dysfunction caused by mutant huntingtin (mHTT) drives early HD pathophysiology. mHTT binds the translocase of mitochondrial inner membrane (TIM23) complex, inhibiting mitochondrial protein import and altering the mitochondrial proteome.

View Article and Find Full Text PDF

Investigating the origins of the mutational signatures in cancer.

Nucleic Acids Res

January 2025

Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.

Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.

View Article and Find Full Text PDF

Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!