Simultaneous Localization and Mapping (SLAM) technology is crucial for achieving spatial localization and autonomous navigation. Finding image features that are representative presents a key challenge in visual SLAM systems. The widely used ORB (Oriented FAST and Rotating BRIEF) algorithm achieves rapid image feature extraction. However, traditional ORB algorithms face issues such as dense, overlapping feature points, and imbalanced distribution, resulting in mismatches and redundancies. This paper introduces an image feature extraction algorithm called Adaptive Threshold and Local Gray Difference-ORB(ALGD-ORB) to address these limitations. Specifically, an adaptive threshold is employed to enhance feature point detection, and an improved quadtree method is used to homogenize feature point distribution. This method combines feature descriptors generated from both gray size and gray difference to enhance feature descriptor distinctiveness. By fusing these descriptors, their effectiveness is improved. Experimental results demonstrate that the ALGD-ORB algorithm significantly enhances the uniformity of feature point distribution compared to other algorithms, while maintaining accuracy and real-time performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593235PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293111PLOS

Publication Analysis

Top Keywords

image feature
12
feature extraction
12
adaptive threshold
12
feature point
12
feature
9
extraction algorithm
8
threshold local
8
local gray
8
gray difference
8
enhance feature
8

Similar Publications

Spatial transcriptomics (ST) offers enormous potential to decipher the biological and pathological heterogeneity in precious archival cancer tissues. Traditionally, these tissues have rarely been used and only examined at a low throughput, most commonly by histopathological staining. ST adds thousands of times as many molecular features to histopathological images, but critical technical issues and limitations require more assessment of how ST performs on fixed archival tissues.

View Article and Find Full Text PDF

A 3D decoupling Alzheimer's disease prediction network based on structural MRI.

Health Inf Sci Syst

December 2025

School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia.

Purpose: This paper aims to develop a three-dimensional (3D) Alzheimer's disease (AD) prediction method, thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic resonance imaging (sMRI) data.

Methods: Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is proposed.

View Article and Find Full Text PDF

Introduction: Ultrasound imaging (US) is the method of choice to assess the canine prostate gland. Whilst recent studies have documented the role of castration in the development of prostatic neoplasia, little is known about parenchymal and perfusion features of the normal and abnormal prostate in neutered dogs. No data are available concerning prostatic changes after the first 90 days following castration.

View Article and Find Full Text PDF

This review examines the emerging applications of machine learning (ML) and radiomics in the diagnosis and prediction of placenta accreta spectrum (PAS) disorders, addressing a significant challenge in obstetric care. It highlights recent advancements in ML algorithms and radiomic techniques that utilize medical imaging modalities like magnetic resonance imaging (MRI) and ultrasound for effective classification and risk stratification of PAS. The review discusses the efficacy of various deep learning models, such as nnU-Net and DenseNet-PAS, which have demonstrated superior performance over traditional diagnostic methods through high AUC scores.

View Article and Find Full Text PDF

Objectives: The pairing of immunotherapy and radiotherapy in the treatment of locally advanced nonsmall cell lung cancer (NSCLC) has shown promise. By combining radiotherapy with immunotherapy, the synergistic effects of these modalities not only bolster antitumor efficacy but also exacerbate lung injury. Consequently, developing a model capable of accurately predicting radiotherapy- and immunotherapy-related pneumonitis in lung cancer patients is a pressing need.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!