The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive. Here, using mouse brain extracts and mouse embryonic fibroblasts, we demonstrate that spatacsin is an ER-resident protein regulating the formation of tubular lysosomes, which are highly dynamic. Screening for spatacsin partners required for tubular lysosome formation showed spatacsin to act by regulating protein degradation. We demonstrate that spatacsin promotes the degradation of its partner AP5Z1, which regulates the relative amount of spastizin and AP5Z1 at lysosomes. Spastizin and AP5Z1 contribute to regulate tubular lysosome formation, as well as their trafficking by interacting with anterograde and retrograde motor proteins, kinesin KIF13A and dynein/dynactin subunit p150Glued, respectively. Ultimately, investigations in polarized mouse cortical neurons in culture demonstrated that spatacsin-regulated degradation of AP5Z1 controls the directionality of lysosomes trafficking. Collectively, our results identify spatacsin as a protein regulating the directionality of lysosome trafficking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621996 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3002337 | DOI Listing |
Cell Rep
August 2024
Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada. Electronic address:
Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes.
View Article and Find Full Text PDFAPL Bioeng
March 2024
Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA.
Cell chirality is crucial for the chiral morphogenesis of biological tissues, yet its underlying mechanism remains unclear. Cell organelle polarization along multiple axes in a cell body, namely, apical-basal, front-rear, and left-right, is known to direct cell behavior such as orientation, rotation, and migration. Among these axes, the left-right bias holds significant sway in determining the chiral directionality of these behaviors.
View Article and Find Full Text PDFJ Biol Chem
April 2024
Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic; Division of Neurology, University Medical Centre, Ljubljana, Slovenia; Department of Neurosciences, Mayo Clinic, Rochester, Minnesota, USA. Electronic address:
Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive.
View Article and Find Full Text PDFiScience
August 2023
Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada.
Chemotaxis drives diverse migrations important for development and involved in diseases, including cancer progression. Using border cells in the egg chamber as a model for collective cell migration, we characterized the role of ArfGAP1 in regulating chemotaxis during this process. We found that ArfGAP1 is required for the maintenance of receptor tyrosine kinases, the guidance receptors, at the plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!