Research into metasurfaces is developing rapidly and is topical due to their importance and applications in various fields such as communications, cryptography, and sensing, to name a few. These materials are artificially engineered to manipulate/control electromagnetic (EM) waves, in order to present a particular functionality. In this regard, nonlinear metasurfaces may present particular functionalities that remain to be discovered. In this paper, we numerically investigate the dynamic behaviors caused by the motion of charge carriers under the intense EM field at the gap of a single nonlinear split-ring resonator (NSRR) in the terahertz (THz) frequency range. We derive the mathematical model that is used to examine the excitation properties of the NSRR and then demonstrate various tuning regions. Analysis of the two-dimensional parameter space reveals that the NSRR exhibits periodic, chaotic patterns as the amplitude of the excitation field and the loss parameter vary. However, this chaotic behavior disappears when the loss parameter is very large. The period doubling that confirms the transition between the periodic and chaotic modes is explored using the bifurcation diagram. The sensitivity of the initial conditions is examined on three dynamic region plots. Our results correctly demonstrate that the NSRR exhibits the attractive phenomenon of multistability. The coexistence of two stable states is studied and confirmed on the basin of attractions for a fixed set of amplitude or loss parameters. The energy balance of the proposed model is well analyzed on the dynamic states and parameters to characterize the different oscillation regimes. The study of the multistability in the work represents an important first step toward the development of photonic memory devices in the THz frequency range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0157489 | DOI Listing |
Sci Rep
January 2025
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly.
View Article and Find Full Text PDFACS Sens
January 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China.
Chemiresistive sensors are currently the most popular gas sensors, and metal semiconductor oxides are often used as sensitive materials (SMs). However, their high operating temperature means that more energy is required to maintain normal operation of the SM, resulting in an increase in power consumption of the entire sensing system. In order to solve this problem, a microwave gas sensor embedded with multilayer TiCT MXene and split ring resonator (SRR) for nitrogen dioxide (NO) detection was reported in this work.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044, China.
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
State Key Laboratory of Millimeter-Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.
This paper presents a bandpass filter (BPF) exploiting hybrid shielded eighth-mode circular substrate-integrated waveguide (SD-EMCSIW) and complementary split ring resonator (CSRR) resonators. The proposed BPF leverages the SD-EMCSIW resonator with a 45-degree angle to create a second-order BPF with a mixed electromagnetic coupling scheme. Detailed analyses of the related electromagnetic characteristics and operating mechanisms have been performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!