Raman Scattering Reveals Ion-Dependent G-Quadruplex Formation in the 15-mer Thrombin-Binding Aptamer upon Association with α-Thrombin.

Anal Chem

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.

Published: November 2023

The discovery of DNA aptamers that bind biomolecular targets has enabled significant innovations in biosensing. Aptamers form secondary structures that exhibit selective high-affinity interactions with their binding partners. The binding of its target by an aptamer is often accompanied by conformational changes, and sensing by aptamers often relies on these changes to provide readout signals from extrinsic labels to detect target association. Many biosensing applications involve aptamers immobilized to surfaces, but methods to characterize conformations of immobilized aptamers and their response have been lacking. To address this challenge, we have developed a structurally informative Raman spectroscopy method to determine conformations of the 15-mer thrombin-binding aptamer (TBA) immobilized on porous silica surfaces. The TBA is of interest because its binding of α-thrombin depends on the aptamer forming an antiparallel G-quadruplex, which is thought to drive signal changes that allow thrombin-binding to be detected. However, specific metal cations also stabilize the G-quadruplex conformation of the aptamer, even in the absence of its protein target. To develop a deeper understanding of the conformational response of the TBA, we utilize Raman spectroscopy to quantify the effects of the metal cations, K (stabilizing) and Li (nonstabilizing), on G-quadruplex versus unfolded populations of the TBA. In K or Li solutions, we then detect the association of α-thrombin with the immobilized aptamer, which can be observed in Raman scattering from the bound protein. The results show that the association of α-thrombin in K solutions produces no detectable change in aptamer conformation, which is found in the G-quadruplex form both before and after binding its target. In Li solutions, however, where the TBA is unfolded prior to α-thrombin association, protein binding occurs with the formation of a G-quadruplex by the aptamer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c02751DOI Listing

Publication Analysis

Top Keywords

association α-thrombin
12
raman scattering
8
15-mer thrombin-binding
8
aptamer
8
thrombin-binding aptamer
8
binding target
8
raman spectroscopy
8
metal cations
8
g-quadruplex
6
association
5

Similar Publications

Medical Malpractice Litigation Associated With Anesthesia: Result From the Lexis China Claims Database 2013 to 2022.

J Perianesth Nurs

January 2025

Department of Anesthesiology, West China Second Hospital, Sichuan University, Key Laboratory of Birth Deficits and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Renmin Nanlu, Chengdu, China. Electronic address:

Purpose: This study conducted an analysis of medical malpractice litigation associated with anesthesia from 2013 to 2022, aiming to evaluate incidents of anesthesia-related safety concerns among surgical patients. The use of data derived from medical malpractice claims provided valuable insights into potential risks associated with anesthesia, contributing to the mitigation of medical malpractice and the enhancement of patient safety.

Design: A retrospective study.

View Article and Find Full Text PDF

Can ICD Electrograms Help Ventricular Tachycardia Ablation?: Results From the Multicenter Randomized AIDEG-VTA Trial.

J Am Coll Cardiol

November 2024

Electrophysiology Laboratory and Arrhythmia Unit, Centro Integral de Enfermedades Cardiovasculares, Hospital Monteprincipe, Grupo HM Hospitales, Madrid, Spain. Electronic address:

Background: The results of ablation of sustained monomorphic ventricular tachycardia (SMVT) are suboptimal. For many patients with implantable cardioverter-defibrillators (ICDs), ICD electrograms (ICD-EGs) provide the only available information on SMVT. ICD-EGs have the ability to distinguish morphologically distinct SMVT and can be used for pace mapping.

View Article and Find Full Text PDF

Background: Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts.

Objectives: The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction.

View Article and Find Full Text PDF

Background: The growing use of leadless pacemaker (LP) technology requires safe and effective solutions for retrieving and removing these devices over the long term.

Objectives: This study sought to evaluate retrieval and removal of an active helix-fixation LP studied in worldwide regulatory clinical trials.

Methods: Subjects enrolled in the LEADLESS II phase 1 investigational device exemption, LEADLESS Observational, or LEADLESS Japan trials with an attempted LP retrieval at least 6 weeks postimplantation were included.

View Article and Find Full Text PDF

Higher Aircraft Noise Exposure Is Linked to Worse Heart Structure and Function by Cardiovascular MRI.

J Am Coll Cardiol

December 2024

UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Cardiology Department, Royal Free Hospital, London, United Kingdom. Electronic address:

Background: Aircraft noise is a growing concern for communities living near airports.

Objectives: This study aimed to explore the impact of aircraft noise on heart structure and function.

Methods: Nighttime aircraft noise levels (L) and weighted 24-hour day-evening-night aircraft noise levels (L) were provided by the UK Civil Aviation Authority for 2011.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!