Contraction of striated muscles is initiated by an increase in cytosolic Ca2+ concentration, which is regulated by tropomyosin and troponin acting on actin filaments at the sarcomere level. Namely, Ca2+-binding to troponin C shifts the "on-off" equilibrium of the thin filament state toward the "on" state, promoting actomyosin interaction; likewise, an increase in temperature to within the body temperature range shifts the equilibrium to the on state, even in the absence of Ca2+. Here, we investigated the temperature dependence of sarcomere shortening along isolated fast skeletal myofibrils using optical heating microscopy. Rapid heating (25 to 41.5°C) within 2 s induced reversible sarcomere shortening in relaxing solution. Further, we investigated the temperature-dependence of the sliding velocity of reconstituted fast skeletal or cardiac thin filaments on fast skeletal or β-cardiac myosin in an in vitro motility assay within the body temperature range. We found that (a) with fast skeletal thin filaments on fast skeletal myosin, the temperature dependence was comparable to that obtained for sarcomere shortening in fast skeletal myofibrils (Q10 ∼8), (b) both types of thin filaments started to slide at lower temperatures on fast skeletal myosin than on β-cardiac myosin, and (c) cardiac thin filaments slid at lower temperatures compared with fast skeletal thin filaments on either type of myosin. Therefore, the mammalian striated muscle may be fine-tuned to contract efficiently via complementary regulation of myosin and tropomyosin-troponin within the body temperature range, depending on the physiological demands of various circumstances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591409PMC
http://dx.doi.org/10.1085/jgp.202313414DOI Listing

Publication Analysis

Top Keywords

fast skeletal
32
thin filaments
20
body temperature
12
temperature range
12
sarcomere shortening
12
myosin tropomyosin-troponin
8
temperature dependence
8
fast
8
skeletal
8
skeletal myofibrils
8

Similar Publications

Systemic calcinosis in horses: Pathological and genetic aspects.

Equine Vet J

January 2025

Setor de Patologia Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.

Background: In horses, systemic calcinosis is a rare syndrome characterised by muscle lesion associated with the mineralisation of large muscle groups or other organs, in the absence of an alternative cause for the calcification, such as toxic, enzootic or metabolic. Molecular and histopathological aspects of the disease are still poorly elucidated.

Objectives: To describe the epidemiological, pathological and molecular aspects of systemic calcinosis in a convenience sample of six horses submitted to necropsy in the Southern and Midwestern regions of Brazil.

View Article and Find Full Text PDF

The present study examined factors associated with trunk skeletal muscle thickness (MT, an index for the amount of skeletal muscle) and echo intensity (EI, an index for the content of non-contractile tissue, such as intramuscular adipose tissue) in young Japanese men and women in consideration of habitual dietary intake. Healthy men (n = 26) and women (n = 24) aged 20 to 26 were enrolled. Trunk MT and EI were evaluated using ultrasound imaging at the height of the 3rd lumbar vertebra.

View Article and Find Full Text PDF

Noggin Combined With Human Dental Pulp Stem Cells to Promote Skeletal Muscle Regeneration.

Stem Cells Int

December 2024

Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.

A proper source of stem cells is key to muscle injury repair. Dental pulp stem cells (DPSCs) are an ideal source for the treatment of muscle injuries due to their high proliferative and differentiation capacities. However, the current myogenic induction efficiency of human DPSCs hinders their use in muscle regeneration due to the unknown induction mechanism.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Humans have, throughout history, faced periods of starvation necessitating increased physical effort to gather food. To explore adaptations in muscle function, 13 participants (7 males and 6 females) fasted for seven days. They lost 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!