Conduction system pacing (CSP) has the potential to achieve physiological-paced activation by pacing the ventricular conduction system. Before CSP is adopted in standard clinical practice, large, randomised, and multi-centre trials are required to investigate CSP safety and efficacy compared to standard biventricular pacing (BVP). Furthermore, there are unanswered questions about pacing thresholds required to achieve optimal pacing delivery while preventing device battery draining, and about which patient groups are more likely to benefit from CSP rather than BVP. In silico studies have been increasingly used to investigate mechanisms underlying changes in cardiac function in response to pathologies and treatment. In the context of CSP, they have been used to improve our understanding of conduction system capture to optimise CSP delivery and battery life, and noninvasively compare different pacing methods on different patient groups. In this review, we discuss the in silico studies published to date investigating different aspects of CSP delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219462PMC
http://dx.doi.org/10.1007/s12265-023-10453-yDOI Listing

Publication Analysis

Top Keywords

conduction system
12
patient groups
8
silico studies
8
csp delivery
8
pacing
7
csp
7
computational modelling
4
modelling enabling
4
enabling silico
4
silico trials
4

Similar Publications

Acting as the interface between the human body and its environment, clothing is indispensable in human thermoregulation and even survival under extreme environmental conditions. Development of clothing textiles with prolonged passive temperature-adaptive thermoregulation without external energy consumption is much needed for protection from thermal stress and energy saving, but very challenging. Here, a temperature-adaptive thermoregulation filament (TATF) consisting of thermoresponsive vacuum cavities formed by the temperature-responsive volume change of the material confined in the cellular cores of the filament is proposed.

View Article and Find Full Text PDF

Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene.

Nanoscale

January 2025

Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Introduction: Increasing age is associated with an increased incidence of necrotising fasciitis. In this study, we aimed to compare the clinical presentation, investigations, microbiology and clinical outcome in elderly (age ≥60 years) and nonelderly (age <60 years) patients with extremity necrotising fasciitis.

Methods: A retrospective review of patients with extremity necrotising fasciitis who were surgically treated between January 2005 and December 2021 was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!