Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-β, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, β-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-β/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-β/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681724 | PMC |
http://dx.doi.org/10.1093/nar/gkad907 | DOI Listing |
Stem Cell Reports
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA. Electronic address:
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1 hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells.
View Article and Find Full Text PDFbioRxiv
October 2024
Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue St. Louis, MO 63110 USA.
Improving generation of insulin-producing islets from human pluripotent stem cells (hPSCs) would enhance their clinical relevance for treating diabetes. Here, we demonstrate that cytoskeletal state at the onset of differentiation is critical for definitive endoderm formation. Depolymerizing F-actin with latrunculin A (latA) during the first 24 hours of differentiation facilitates rapid exit from pluripotency and alters Activin/Nodal, BMP, JNK-JUN, and WNT pathway signaling dynamics during definitive endoderm formation.
View Article and Find Full Text PDFNucleic Acids Res
November 2023
Medical College of Soochow University, Suzhou 215123, China.
Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation.
View Article and Find Full Text PDFJ Cell Physiol
August 2023
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.
The vertebrate organizer is a specified embryonic tissue that regulates dorsoventral patterning and axis formation. Although numerous cellular signaling pathways have been identified as regulators of the organizer's dynamic functions, the process remains incompletely understood, and as-yet unknown pathways remain to be explored for sophisticated mechanistic understanding of the vertebrate organizer. To identify new potential key factors of the organizer, we performed complementary DNA (cDNA) microarray screening using organizer-mimicking Xenopus laevis tissue.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2023
Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China.
How left-right (LR) asymmetry emerges in a patterning field along the anterior-posterior axis remains an unresolved problem in developmental biology. Left-biased Nodal emanating from the LR organizer propagates from posterior to anterior (PA) and establishes the LR pattern of the whole embryo. However, little is known about the regulatory mechanism of the PA spread of Nodal and its asymmetric activation in the forebrain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!