Expression quantitative trait locus (eQTL) analysis is a powerful tool used to investigate genetic variations in complex diseases, including cancer. We previously developed a comprehensive database, PancanQTL, to characterize cancer eQTLs using The Cancer Genome Atlas (TCGA) dataset, and linked eQTLs with patient survival and GWAS risk variants. Here, we present an updated version, PancanQTLv2.0 (https://hanlaboratory.com/PancanQTLv2/), with advancements in fine-mapping causal variants for eQTLs, updating eQTLs overlapping with GWAS linkage disequilibrium regions and identifying eQTLs associated with drug response and immune infiltration. Through fine-mapping analysis, we identified 58 747 fine-mapped eQTLs credible sets, providing mechanic insights of gene regulation in cancer. We further integrated the latest GWAS Catalog and identified a total of 84 592 135 linkage associations between eQTLs and the existing GWAS loci, which represents a remarkable ∼50-fold increase compared to the previous version. Additionally, PancanQTLv2.0 uncovered 659516 associations between eQTLs and drug response and identified 146948 associations between eQTLs and immune cell abundance, providing potentially clinical utility of eQTLs in cancer therapy. PancanQTLv2.0 expanded the resources available for investigating gene expression regulation in human cancers, leading to advancements in cancer research and precision oncology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767806 | PMC |
http://dx.doi.org/10.1093/nar/gkad916 | DOI Listing |
PLoS Genet
January 2025
Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America.
Understanding the genetic regulatory mechanisms of gene expression is an ongoing challenge. Genetic variants that are associated with expression levels are readily identified when they are proximal to the gene (i.e.
View Article and Find Full Text PDFCell Genom
January 2025
Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:
Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWASs) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. To address this gap, we mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions.
View Article and Find Full Text PDFJ Autoimmun
January 2025
Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:
It has been known that Epstein-Barr virus (EBV) can latently infect immune cells after the initial infection, and epidemiological studies have suggested its association with the onset of immune-mediated diseases (IMDs). However, the specific impact of EBV infection on IMDs pathology remains unclear. We quantified EBV load of B cell subsets (Naïve B cells, Unswitched memory B cells, Switched memory B cells, Double negative B cells, and Plasmablasts) in IMD patients as well as healthy control (HC) using bulk RNA sequencing data of 504 donors.
View Article and Find Full Text PDFDermatitis
January 2025
From the Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Eczema and dermatitis are common inflammatory skin conditions with significant morbidity. Identifying drug-targetable genes can facilitate the development of effective treatments. This study analyzed data obtained by meta-analysis of 2 genome-wide association studies on eczema/dermatitis (57,311 cases and 896,779 controls, European ancestry).
View Article and Find Full Text PDFSci Rep
January 2025
The Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong Province, China.
Mendelian randomization (MR) was employed to investigate the causal relationships between immune cell phenotypes, hyperthyroidism (HD), and potential metabolic mediators. In this study, we acquired 731 immune cell phenotypes from genome-wide association studies (GWAS) (n = 18,622), HD data from the research by Handan Melike Dönertaş et al. (3,731 cases, 480,867 controls), and aggregated statistics of 1,400 blood metabolites from UK Biobank (n = 115,078).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!