Among the diverse sources of neoantigens (i.e. single-nucleotide variants (SNVs), insertions or deletions (Indels) and fusion genes), fusion gene-derived neoantigens are generally more immunogenic, have multiple targets per mutation and are more widely distributed across various cancer types. Therefore, fusion gene-derived neoantigens are a potential source of highly immunogenic neoantigens and hold great promise for cancer immunotherapy. However, the lack of fusion protein sequence resources and knowledge prevents this application. We introduce 'FusionNeoAntigen', a dedicated resource for fusion-specific neoantigens, accessible at https://compbio.uth.edu/FusionNeoAntigen. In this resource, we provide fusion gene breakpoint crossing neoantigens focused on ∼43K fusion proteins of ∼16K in-frame fusion genes from FusionGDB2.0. FusionNeoAntigen provides fusion gene information, corresponding fusion protein sequences, fusion breakpoint peptide sequences, fusion gene-derived neoantigen prediction, virtual screening between fusion breakpoint peptides having potential fusion neoantigens and human leucocyte antigens (HLAs), fusion breakpoint RNA/protein sequences for developing vaccines, information on samples with fusion-specific neoantigen, potential CAR-T targetable cell-surface fusion proteins and literature curation. FusionNeoAntigen will help to develop fusion gene-based immunotherapies. We will report all potential fusion-specific neoantigens from all possible open reading frames of ∼120K human fusion genes in future versions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767944 | PMC |
http://dx.doi.org/10.1093/nar/gkad922 | DOI Listing |
Comput Biol Med
January 2025
College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Institute of Optoelectronics, Jinhua, 321004, China. Electronic address:
Accurate segmentation of brain tumors from MRI scans is a critical task in medical image analysis, yet it remains challenging due to the complex and variable nature of tumor shapes and sizes. Traditional convolutional neural networks (CNNs), while effective for local feature extraction, struggle to capture long-range dependencies crucial for 3D medical image analysis. To address these limitations, this paper presents VcaNet, a novel architecture that integrates a Vision Transformer (ViT) with a fusion channel and spatial attention module (CBAM), aimed at enhancing 3D brain tumor segmentation.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFJ Bone Joint Surg Am
November 2024
Department of Neurosurgery, Bokwang Hospital, Daegu, Republic of Korea.
Background: Oblique lumbar interbody fusion (OLIF) results in less tissue damage than in other surgeries, but immediate postoperative pain occurs. Notably, facet joint widening occurs in the vertebral body after OLIF. We hypothesized that the application of a facet joint block to the area of widening would relieve facet joint pain.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany.
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
New England Eye Center, Tufts Medical Center, Boston, MA, USA.
Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.
Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!