As a key rate-limiting enzyme in the synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (DHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1-pyrazolo[3,4-]pyridine scaffold was identified as an DHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1-pyrrolo[2,3-]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (, which was found to be the most promising and drug-like compound with potent inhibitory activity against DHODH (IC = 173.4 nM). Compound demonstrated acceptable pharmacokinetic characteristics and alleviated the severity of acute ulcerative colitis induced by dextran sulfate sodium in a dose-dependent manner. Notably, exerted better therapeutic effects on ulcerative colitis than DHODH inhibitor vidofludimus and Janus kinase (JAK) inhibitor tofacitinib. Taken together, is a promising DHODH inhibitor for the treatment of IBD and deserves to be developed as a preclinical candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.3c01365 | DOI Listing |
Front Pharmacol
December 2024
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Background: Astragalus mongholicus (AM) and Salvia miltiorrhiza (SM) are commonly used in traditional Chinese medicine to treat heart failure (HF). Ferroptosis has been studied as a key factor in the occurrence of HF. It remains unclear whether the combined use of AM and SM can effectively improve HF and the underlying mechanisms.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.
Malaria remains a serious global health challenge, yet treatment and control programs are threatened by drug resistance. Dihydroorotate dehydrogenase (DHODH) was clinically validated as a target for treatment and prevention of malaria through human studies with DSM265, but currently no drugs against this target are in clinical use. We used structure-based computational tools including free energy perturbation (FEP+) to discover highly ligand efficient, potent, and selective pyrazole-based DHODH inhibitors through a scaffold hop from a pyrrole-based series.
View Article and Find Full Text PDFCell Rep Med
December 2024
Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands. Electronic address:
Malignant rhabdoid tumor (MRT) is one of the most aggressive childhood cancers for which no effective treatment options are available. Reprogramming of cellular metabolism is an important hallmark of cancer, with various metabolism-based drugs being approved as a cancer treatment. In this study, we use patient-derived tumor organoids (tumoroids) to map the metabolic landscape of several pediatric cancers.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2024
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
FTO, an -methyladenosine (mA) and ,2'--dimethyladenosine (mA) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (DHODH).
View Article and Find Full Text PDFAnn Hepatol
December 2024
Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233000, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!