Parasitoid wasps are a diverse group of hymenopteran insects that serve as invaluable resources for pest biocontrol. To ensure successful parasitism, parasitoid wasps inject venom into their hosts to suppress their hosts' immunity, modulate hosts' development, metabolism, and even behavior. With over 600,000 estimated species, the diversity of parasitoid wasps surpasses that of other venomous animals, such as snakes, cone snails, and spiders. Parasitoid wasp venom is an underexplored source of bioactive molecules with potential applications in pest control and medicine. However, collecting parasitoid venom is challenging due to the inability to use direct or electrical stimulation and the difficulty in dissection because of their small size. Trichogramma is a genus of tiny (~0.5 mm) egg parasitoid wasps that are widely used for the biological control of lepidopteran pests in both agriculture and forests. Here, we report a method for extracting venom from T. dendrolimi using artificial hosts. These artificial hosts are created with polyethylene film and amino acid solutions and then inoculated with Trichogramma wasps for parasitism. The venom was subsequently collected and concentrated. This method enables the extraction of large amounts of Trichogramma venom while avoiding contamination from other tissues caused by dissection, a common issue in venom reservoir dissection protocols. This innovative approach facilitates the study of Trichogramma venom, paving the way for new research and potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66032 | DOI Listing |
Biol Open
December 2024
Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA.
Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation.
View Article and Find Full Text PDFFront Insect Sci
December 2024
Department of Plant Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan.
The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins.
View Article and Find Full Text PDFActa Trop
December 2024
Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan. Electronic address:
Ixodid ticks are significant vectors of pathogens affecting both humans and animals. Biological control with natural enemies represents a sustainable tool for managing ticks. However, there is a substantial lack of knowledge about the natural enemies of ticks.
View Article and Find Full Text PDFBackground: Parasitic wasps manipulate host development for successful parasitization. When the host Ostrinia furnacalis is parasitized by the parasitoid Macrocentrus cingulum, its larvae fail to pupate and are consumed as nutrition by the wasp larvae. However, the mechanism by which M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!